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40_ INTERACTION OF FLANGE_ GASKET_ AND PIPE

by

S. Levy

40.0 Summary

This section presents a review of available design procedures for the

many environmental factors affecting the performance of connectors. Novel

and unusual effects are emphasized so that they may be correctly interpreted.

Later sections in this volume will discuss in more detail some of the

specific design considerations introduced in this section.
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40,1 Introduction

A fluid connector mechanically joins two sections of pipe and provides

a seal against fluid leakage. It must perform these functions for a wide

r_nge of environmental conditions.

Ease in design suggests the use of separate parts of the connector for

the "Joining" and "sealing" functions with a minimum of interaction between

them. Such a design approach avoids compromising the "sealing" function by

changes intended to improve the reliability of "Joining" and vice versa.

The necessity _o economize on weight and sp_ce does not ordinarily permit

the complete separation of functions. As a result, it is found that many

connectors in use today have constructions such that flange or bolt flexi-

bility relaxes gasket pressure, while gasket creep may result in Joint loose-

hess.

As is pointed out in Ref. I, the first step in the design of a bolted

flanged connection, for example, is to select the seal or gasket material and

its shape. Sufficient pressure must then be provided on the gasket to hold the

Joint tight at all times. The load required to do this, as well as overcome

the internal fluid pressure, is provided by the bolts and determines their

size. The flange dimensions must now be chosen to withstand the bolt load.

Similar procedures can be described for other types of Joints. After the

initial design has been determined, it is necessary to evaluate its per-

formance under the many other environmental conditions which may apply.

Consideration must be given to tolerances, material availability, cost,

LOX sensitivity, and many other factors.

Internal pressure has a major effect on connectors. In many designs

it causes a reduction in gasket pressure and, therefore, in seal performance.

A typical example is the conventional flange coupling shown in Fig. 40.1

k
P

FIG. 40.1

Conventional flange

coupling

With increasing pressure, p, gasket compression at A decreases. At a suf-

ficiently high pressure, the gasket compression has decreased to be equal

in magnitude to the internal pressure. Further increases in internal

pressure find the gasket acting as a pressure relief valve with correspond-

ing large-scale leakage. Recognition of theeffect of internal pressure

on gasket compression has led to many "pressure assisted" seals, a typical

example of which is shown in Fig. 40.2. Such seals are based on Bridgman's

"unsupported area" principle (Ref. 2). By allowing the internal pressure

to "bulge" the U-shaped seal ring, it is possible to have the seal pressure

(_t A,for example) increase with internal pressure, p, rather than decrease.

40-2
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FIG. 40.2 - Pressure-assisted seals

Temperature changes and temperature transients also have a major effect

on connectors. An example of an AN fitting is shown in Fig. 40°3.. A cold

fluid starting to flow through the pipe will cool the inside much more

rapidly than the sleeve, A, or nut,' B. As a result, the contraction of

the sleeve and nut will be slower. The sealing pressure will thereSy be

lowered with increased possibility of leakage. Another example is the

flanged connector shown in Fig: 40.4. Here the flange, A, could

FIG. 40.3 - AN-type fitting

cool more rapidly than the bolts, B. As a result, the gasket load will be

reduced and leakage made more likely. Again, recognition of the effect of

temperature change in causing contraction or expansion has resulted in the

design of "temperature-compensated" connectors. In Fig. 40.5 is shown-

B B

A A

FIG. 40.4 - Flanged Connector
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a flange connector with a sealant material confined between the flange and
an invar ring (Ref. 3). During cooling the sealant contracts propor-
tionately more than the flange material. The invar ring, since it contracts
less, tends to compensatefor this excess and keep the joint tight. Data on
the effect of temperature on the elastic and expansion properties of mate-
rials are given in Refs. 4, 5, and 6. Since the coefficients of expansion
may vary substantially with temperature, true compensation is seldom
achieved.

Bending forces due to vibration or otherwise tend to open one side of
the connector and close more tightly the other side.

Other environmental effects include radiation, erosion by the fluid

flow, water-hammer, high vacuum, etc.

A successful connector must be capable of withstanding all environ-

mental conditions without coming apart and with essentially zero leakage.

To determine if a connector will be adequate, the methods given in other

sections of this report and in the literature must be applied to determine

deformations, stresses and leakage flow rates. In this section we will

examine some of these methods and how the results thus obtained are combined

to determine the overall connector performance.

__al Invar

-.-:t-

ant

FIG. 40.5 - Temperature-Compensated Seal
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40.2 Flange Deformation

An excellent discussion of the stresses and deformations of the flanges

of connectors is given in Ref. 7. The flanges considered in Ref. 7 have the

contact area between flanges entirely within the bolt circle (see also

Section 42). This reference considers the elastic interaction of flange

ring, tapered hub, and pipe. It presents charts which greatly increase the

speed of computing maximum stresses. It also presents equations for de-

termining flange rotation and radial expansion. It assumes an axisyn_netric

loading, with negligible "dishing" of the flange ring. It excludes all

types of flange facings where the gasket or contacting flange surfaces have

any contact outside of the bolt circle.

Flanges which are in bearing outside of the bolt circle are considered

in Ref. 81 and in section 41. In this analysis it is assumed that radial

force is resisted by hoop stress in the flange. Axial forces are considered

to cause a bending moment in the flange which is resisted by bending stresses

in the flange ring in a radial direction. It is assumed that the flange

bends about the bolt center circle as if it were fixed there. The elastic

interaction of flange ring, tapered hub, and pipe is then considered by re-

quiring defle=tions and slopes to match at their junctures.

The effect of flange barreling due to pressure and temperature differ-

ences is considered in Ref. 9. Ref. 9 presents a simplification of the ap-

proach in Ref. 7 by considering the flange and hub to move as a unit without

cross-sectional distortion. This approach is a good approximation for sturdy

flanges where the length and thickness are comparable.

I0
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40 .3 Gasket Compression

From the point of view of mathematical analysis it would be most desirable

if the gasket compressed a8 a linear spring. The actual relationship is much

more complex, as is shown by Fig. 40.6 taken from Fig. ii of Ref.10 for a

FIG.

B  A/8

I Contraction

40.6 - Repeated load on compressed-asbestos gasket material

compressed-asbestos gasket material. In the regions A we see creep under

constant stress. At B we see the curved form of the initial load-shortenlng

curve. At C we see that the curve for retraction differs from the loading

curve B and in this case overlaps for reloadlng. (The overlapping is not

always present. See, for example, Fig. 9 of Ref. I0.) Other gaskets may

include metallic elements that improve the "springiness" and linearity and

may include "soft" materials, such as teflon and rubber, that can be

squashed substantially to improve the sealing effectiveness. Such gaskets

are considered in detail in other sections of this report.

An important function of the gasket is to be soft enough to provide

good sealing (see sections 22 and 33) while retaining adequate hoop strength

to resist "blowing out."

An interesting characteristic of the interaction of flange and gasket

is discussed in Ref. ii for flanges whose contacting area is entirely within

the bolting circle. It is pointed out that when pressure is applied "to

our knowledge no increase in bolt stress has ever been observed. On the

contrary, the bolt stress has been observed to reduce as internal pressure

is applied both with solid metal and soft gaskets until the gasket precom-

pression is lost and leakage begins. This effect is due to rotation of

the ring flanges under the applied moments and far outweighs the effect

of the hydrostatic end force." It seems likely that a similar phenomenon

will be present when thermal transients heat the hub much more rapidly than

the ring flange.

Creep in gaskets is treated most eloquently in Ref. 12. It is pointed

out that one can observe "declines in gross gasket loads of ordinary 1/16-in.

compressed-asbestos gaskets...of the order of 68 percent in 20 hours at a

temperature corresponding to 350 psi steam." Such creep will have a marked

effect on the stress and deformation distribution of a connector and must

be considered where extended llfe is involved. In another coa_aent,
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W.R. Burrows, remarking on the paper in Ref. 13, stated that "very heavy

exchange flanges with 1.25-in. SAE 4140 stud bolts, operating at 400 psi

and 650°F, leaked after 24 hours on stream. Measured stud bolt stresses

of 50,000 psi had relaxed to 12,000 psi owing to crushing of the soft-iron

gaskets. These gaskets, following custom, had been designed for a bolt

stress of 25,000 psi. The actual stress of 50,000 psi crushed the gaskets

even at a temperature of 650OF. ''

At high pressures there is a tendency to use Bridgman-type closures,

Ref. 14, which utilize the unsupported-area principle (see also Sections

51 and 52.) Many closures of this type have been devised and some are widely

used. In some cases the gasket is a hard metal and sealing is accompanied by

permanent deformation of either the gasket, the seat, or both. As pointed

out in Ref. 14, "at present, even for the simplest types of gaskets, there is

no completely reliable design criterion, based on anything other than experience."

In view of the nonlinear behavior of almost all good gasket materials,

it would appear that reliable designs can best be achieved where the contri-

bution of the gasket "stiffness" to the overall stiffness is small. In

this way the uncertainty introduced by this analytically difficult portion

of the design can be minimized.

12
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40.4 Bolt SpacinE

Proper bolt spacing depends on flange thickness and gasket flexibility

as well as other factors (see Section 43). It is apparent that a given

bolting load can be achieved by either a few large bolts or by a greater

number of smaller bolts. Factors affecting bolt size and spacing, as

pointed out in Ref. I, are clearance necessary for socket wrenches; strength

to withstand over-torquing; adequate spacing to avoid high stress-con-

centration; and close enough spacing to insure uniform gasket compression.

Ref. I recommends a bolt spacing of 2-1/4 to 3-1/2 bolt diameters between

cer_ters. A somewhat more involved method of analysis is presented in Ref.

I0. It considers the flange-gasket combination as a beam on an elastic

foundation. In view of the questionable adequacy of neglecting the effect

of the hub in increasing the flange ring bending stiffness, this refinement

does not seem to have broad application. Bolt spacing is also considered

in Ref. 8. It recommends a spacing less than 2.6 times the flange ring

thickness to achieve good sealing between bolts. The variety of "rules"

for choosing bolt spacing, all of which appear to be successful, indicates

that bolt spacing is not a critical design consideration.

13
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40.5 Interaction of Flange and Gasket

The effect of internal pressure on the interaction of flange and gasket

is considered in detail in Ref. 13. Using the analysis for flange deforma-

tion in Ref. 7 and assuming the gasket behavior for decreasing load is ade-

quately represented by a linear relationship, a method is provided for con-

sidering the loads when (a) assembling the joint, (b) at test pressure, and

(c) in service. In Pig. 40.7, taken from Fig. 2 of Ref. 13,P_ is the service

pressure and Pp is the test pressure. The line GJ is the limit of bolt load
for flange yielding. It shows a decreasing permissible bolt load as the

pressure increases. The_line OA represents the bolt load to compensate the

hydrostatic end force. Line OB represents llne OA plus the gasket sealing

force. (The required gasket sealing force is assumed to increase linearly

with pressure.) The slope -_ of the bolt load curves, CD, FB, MJ, and KL

F

Bolt

Load FIG. 40.7

C Interaction of flange,

bolts and gasket

0 1_ P2
Internal Pressure

is determined by the interaction of the various stfffnesses. If the bolts

are initially tightened to C, leaking will occur at D at a pressure greater

than Pq, the operating pressure, and less than P_, the test pressure. Withz
the bolts initially tightened to F, leaking will not occur, although at B

the connection will be on the verge of leaking. With the initial bolt tight-

ening to K, as pressure is increased, the flange begins to yield at L and

continues to yield until J is reached. Upon removing load, the bolt tightness

returns to M. It may be pointed out that the effect of gasket creep would be

to lower the bolt-load curves, such as FB, with time so that they might leak

after a short time in service.

40-9



40.6 Hydrostatic End Force

In most connectors one considers a "hydrostatic end force" to load the

connector axially. Such a force is assumed in Ref. 7. In the case of a

pipe having expansion joints, however, such as found in missile structures,

it is not necessarily true that an axial force is present. Similarly, a

pipe having closely spaced attachments to a supporting structure may have

much reduced "end force" carried by the connector. In Ref. 15 it is pointed

out that "in concentrating on the bolted-flange joint itself, it is easy to

overlook the fact that there is little hydrostatic end force in pipe lines

equipped with slip joints." The correct axial force to be considered in a

connector, therefore, depends on interaction between piping and supporting

structure and may be temperature dependent. In addition, it is reasonable

to provide for a pipe bendlngmoment to be transmitted across the connector.

A rather extensive discussion of piping flexibility effects is given in

Ref. 16.

15
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40.7 Closures

Closures for pipes can be plugs in the case of small sizes but must be

considered as heads for large sizes. A method for considering a "floating

head" (seel Fig 40..8) is'given in Ref.17. The interaction of A and B is re-

quired to give equal radial displacement and rotation of their Juncture J.

Part A is considered to have no cross-sectional distortion. The analysis is

well adapted for use with the flange analysis of Ref. 13 to determine sealing

performance as well as stresses and deformation.

I'I'T'I

II
II

II
i I
i I
i I

FIG. 40.8 - Pipe closure

16
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40.8 Transient Thermal Stresses

During the initial flow through a connector of a fluid which is either

hotter or colder than the connector walls, there will exist a transient

temperature condition. The inner walls will change temperature more rapidly

than the outer walls. In addition, the thinner sections will "heat through"

more rapidly than the thicker sections. As a result of these temperature '

differences, there will be transient stresses and distortions which could

initiate leakage. A discussion and general equations for some of the stress

and temperature problems are given in Ref. 18. The author points out,

however, that "clearly the stress and temperature formulas for hollow cylinders

pose difficult problems in evaluation. The roots of the equation have not yet
been evaluated. Also, the ratio of outer to inner radius is involved, and

a general graphical presentation such as can be made for the case of plates

is difficult because of the large number of graphs which would now be required."

The results of an approximate solution for the transient temperatures in a

cylinder are given in Section 61. This approximate solution is particularly

adaptable to stress analysis, since it gives the temperature as a power
function of the radius. The application of this solution to determining the

distortion of flanges is given in Section 48. Figure 61.5 in Section 61 is

particularly useful, since it gives the temperature difference from inner to

outer wall at the time of maximum temperature difference. Additional infor-

mation on stresses and temperature distributions is found in Ref. 19.

17
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40.9 Warped Flanges

Initial lack of flatness in the flanges of connectors can result

in leakage if the bolt loads are not sufficient to achieve positive gasket

compression at all points on the circumference. The magnitude of permis-

sible initial warping of the flanges is, therefore, governed by the available

additional bolt strength and flange strength. Section 46 presents equations

for computing flange warping displacements due to bolt load and gasket

forces. The effect of the pipe in restraining the flange is included in the

analysis. It is assumed that the deviation from uniformity of forces and

displacements around the circumference of the flange can be adequately ap-

proximated by considering them to vary as cos 20_ Ref. 9 considers warping

also by developing the pipe shell as a flat plate. The adequacy of this

approximation will depend on the flange and pipe hoop bending strengths and

is questioned by Waters in his discussion of the paper.

IS
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40.10 Leakage Flow

The interface between gasket and flange forms a channel for leakage

flow. The depth of this channel depends on surface finish, yield strength

of the gasket and flange materials, and gasket compression. The interplay

of these factors is considered in Sec. 33, using a statistical approach.

Data are presented for typical surface asperities, and a method is presented

for determining the effect of gasket compression on the effective flow channel.

The magnitude of the flow through such a channel is considered in Sec. 33

making use of the method in Sec. 22. Sec. 22 considers the parameters affect-

ing fluid flow and provides equations for the velocity, quantity, etc. The

leakage flow may be turbulent, laminar, or molecular, depending on the flow

parameters. An important result in Sec. 22 is that the mass rate of flow is

proportional to the cube of the channel thickness in laminar flow and propor-

tional to the square of the channel thickness in molecular flow. Thus, a

reduction in clearance from I00 to i0 microinches reduces the flow by a factor

of I00 to 1,000.

40-14



40.11 Fluid Momentum Effects

When the fluid in a pipe is caused to accelerate or decelerate, un-

balanced forces are imposed on the piping system. Thus, in the pipe shown

in Fig. 40.9, an acceleration in fluid flow in direction A causes a reaction

of the pipe at B in the direction shown. The magnitude of the bending moment

and axial force thus imposed on connectors in the piping system will depend

on the restraint imposed on the piping system by the supporting structure C.

When valves are suddenly opened or closed, these momentum changes are most

severe and are described as "water hanmmr." A discussion of "water hammer"

is given in Section 62,

B-->

i

C

FIG. 40.9 - Effect of fluid flow

Even when the fluid flow is zero, momentum effects are present due to

acceleration of the entire booster. (see Section 63).

19
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40.12 - Fatigue

In some instances the number of stress cycles at a particular

connector may be sufficient to result in fatigue failure. A method for

analyzing for fatigue damage is presented in Ref. 19. The method assumes

that the stress condition is known versus time for a complete cycle of

operation. It takes account of yielding and of the mean and alternating

stresses.

2O
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40.13 Discussion

Many methods and considerations have been presented concerning the

interaction of flange, gasket seal, and pipe. The optimum configuration of

a connector varies widely depending on the service conditions. To consider

all of the factors in any particular design requires a large amount of de-

tailed computation. As a result of this, standard forms of connectors have

evolved for particular applications in the past, and new forms car be ex-

pected to meet the requirements of new environments.

A large amount of careful work has been done in the field of connector

design, and this provides a sound base from which to evolve new design methods

and to develop and evaluate new materials for new environments.

The missile application of fluid connectors imposes much more severe

design requirements because of the range of pressure, temperature and time

over which performance is required and the limitations imposed by minimum

weight, fox sensitivity, radiation and space environments in general.

When methods and applicable material properties have been assembled,

it may be possible to combine them in one, or several, computer programs to

yield optimum designs for specified load conditions.

21
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41. DESIGN OF LARGE-DIAMETER LIGHT-WEIGHT FLANGES HAVING

CONTACT OUTSIDE THE BOLT CIRCLE

by

S. Levy

(Section 41.2 based on work of H.J. Macke)

41.0 Summary

This report presents a consolidation of light-weight flange design

procedures for connector flanges having contact outside of the bolt circle.

The specific equations presented in Sec. 41.2 apply in the case of flanges

which have a slight lip so that they bear against each other only near the

inner and outer radii of the flange. The equations in Sec. 41.3 apply in

the case of flat flanges. The equations in Sec. 41.4 apply to dished

flanges. Sec. 41.5 considers warping. The methods described should be

considered as a design approach rather than a rigorous treatment of flanges.

The objective is to provide a reasonably simple design tool for consistent

design of light-weight flanges.

Flanges designed by this procedure may be compared with flanges

designed by the procedure of Section 42 to determine which design is

preferable for a particular application._ l
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41.1 Nomenclature

A

a _.

B

b

d

dH

e

E

F

h

K=NAE/t

KA, K B

K 1, K 2

L

M

N

P

Q

R

t

u

w

Y

v

aH

a
r

_R

c

Units

Root cross-sectional area of bolts inch 2

Radius to cylinder wall mid-thickness inch

Radius to flange mid-radius inch

Bolt load per unit length of flange Ib/in

Distance from bolt circle to outer flange

bearing circle, Fig. 41.2

Diameter of bolt

Diameter of bolt head

Effective width of flange in bearing

Young' s modulus

Axial tension in cylinder wall

Cylinder wall thickness

Bolt stiffness

Factors in Eq. (3)

Factors in Eq. (7)

Distance from mid-thickness of cylinder

wall to bolt circle inch

Unsupported radial length of flange inch

Moment per unit circumference at flange-

cylinder junction

Number of bolts per inch

Internal pressure

Shear per unit circumference at flange-

cylinder junction Ib/in

Reaction force where flanges contact Ib/in

Flange thickness inch

Radial outward deflection with suitable

subscripts inch

Warping deflection inch

Axial deflection of flange inch

Poissons ratio

Hoop stress in flange

Radial bending stress in flange

Bearing stress between flanges

Axial stress in cylinder

41-2

inch

inch

inch

inch

ib/in 2

Ib/in

inch

(Ib/in)/inch

Ib-in/inch

1/inch

Ib/in 2

ib/in 2

ib/in 2

ib/in 2

Ib/in 2



0 Slope with suitable subscripts

Initial stretch in bolts

Cylinder constant

Units

radians

inch

i/inch
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41o2 Flanges Having Lips at Edges

41.2.1. Introduction

The methods of designing flanged connectors where there is a gasket in-

side the bolt circle and no contact outside the bolt circle have received

widespread consideration. Much of this work is collected in Ref. I. A key

element in this work is given in Ref. 2. Using Ref. i, it is found that as

the pipe radius increases relative to the pipe wall thickness, the flange

cross-section becomes relatively heavier - primarily to resist flange twisting.

Substantial weight saving is therefore possible by allowing the flanges to

bear outside the bolt circle and thus resist twisting. When the flanges bear

against each other near their inner and outer edges and are drawn together

by the bolts, their behavior is well described by considering a radial strip

between the two edges as a beam carrying the bolt load.

Quite a few assumptions and idealizations are involved. Some of the

major ones are given in the list below.

a. The circumferential flange is considered flexible and bends in a

radial direction as a beam simply supported at the flange inner and outer

edges. It is realized that in some flanges the behavior may more nearly

approximate a cantilever from the outer contact ring. The analysis for

these cases is given in Section 41.3 and in Section 41.4, The flanges in this

section resist load only by distortion of the cross-section, while those in

Ref. I resist load primarily by twisting.

b. The difference between inner and outer flange radii is significantly

less than the average flange radius.

c. The cylinder has uniform thickness and diameter.

d. The spacing between flanges is large enough so that flanges do not

mutually affect each other.

e. The bolt load B is considered uniformly distributed across the bolt

head width as shown in Fig. 41.1o The bearing force between flanges is R

near the outer edge and zero at the inner edge corresponding to conditions

just prior to separation at the inner edge. R is considered to act inboard

of the outer flange edge at the center of pressure between flanges.

f. The cylinder is treated as if loaded axisymmetrically only, even

though part of the load (due to vibration or maneuvers) may be antisymmetric.

g. Beam theory is used even though the flange thickness is comparable

to the radial flange length.

_4
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41.2.2. Analysis

41.2.2.1 .Flange Deformation

The radial deflection of the flange is determined from the average

hoop stress in the flange.

a.

b.

c.

Hoop stress in the flange due to pressure is the product of

pressure, inner flange radius, and flange width divided by

flange cross-sectional area. It is approximately given by

pa/L

Hoop stress in the flange due to shear from the cylinder is the

product of shear force and average pipe radius divided by

flange cross-sectional area. It is approximately given by

Qa/tL

Total hoop stress in flange is

pa + Qa UlE
_=L tL--_

a

where u I is the radial outward deflection of the flange.

Qa (p +Ul =E L_+ tL -

For simplicity, u I will be expressed as

where

41.2.2.2.

u I = KA + KBQ

KA = paa/EL

KB = aa/tEL

(i)

Solving Eq. (I)

(2)

(3)

Cylinder Deflection due to Pressure and Axial Load

The radial deflection of the cylinder at a great distance from the

flange is determined from the following stresses in the cylinder:

a. Hoop stress due to pressure = pa/h

b. Axial stress = F/h

29
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The radial outward deflection of the cylinder at a great distance from the
flange is then given by

u2 = (a/Eh) (pa-vF) (4)

41.2.2.3. Flange Slope_at Junction of Flange and Cylinder

In the following analysis a radial strip of the flange between

inner and outer radii is considered to be a simple beam on end supports at

the two ends of L, Fig. 41.2. At the end attached to the cylinder a moment

acts equal to M + Q t/2, Because the flange is not free to distort circum-
ferentially the modulus of elasticity E is replaced by E / (i - v_) in the

beam equations. The flange is considered to have recessed faces between the

edges so that bearing between flanges occurs only at the ends of L. The

slope of the flange at the junction with the cylinder is then

__l-v2 [_2 I (12L2-4b2-d_) (M + Qt/2)] (5)(4Lm-4b2-) F + _--
81= 2 Et 3

WHere £he 561£ 10ad is given by

B = FL/b + (S + Qt/2)/b (6)

We can write Eq. (5) in the form

_here;

Et 3

K 1 = (i/24) (4L2-4b2-_)

K2 = (i/24L) (12L2-4b2-_)

(7)

I_I.IZ.2.4: Cylinder Deflection due to Q and M

With cylindrical shell theory it can readily be shown that the

slope and deflection of the cylinder due to an axisymmetric moment M and

shear Q is

u 3 = (2a2_2/Eh)M- (2a2_/Eh)Q

83 = -(4a2_3/Eh)M + (2a2_2/Eh)Q

(8)

(9)

where _4 = 3(l_v2)/a2h2 (i0)

3O
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4 1.2.2.5. Calculation of M and Q

To determine the value of M and Q we equate the cylinder and flange

deformations at their junction. From Eqs. (3), (4) and (8) we have

(a/Eh) (pa-vF) + (2a2_2/Eh)M - (2a2_/Eh)Q = KA + KBQ (ii)

From Eqs. (7) and (9) we have

12(1-v2)[KIF+ K2 (M+ Qt/2)]= -(4a2_3_h)_+ (2a2_2_hlQ
Et 3

(12)

which reduces to

KIF = -M(t3/_h 3 + K2) + Q (t3/2_2h3-tK2/2) (13)

Similarly Eq. (ii) reduces to

p-vF/a -EhKA/a2 = -M(2_ 2) + Q (213"I'EI_.-B/a2) (14)

Equations (13) and (14) are readily solved for M and Q when p, F and the

geometric constants are specified.

31
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_1.2.3. Important Stresses

41.2.3.1. Flange Stresses

Average hoop stress in flange is

aH = Ca/L) CQ/t + p) (15)

To obtain the maximum radial bending stress at the bolt circle we

divide the usual beam stress by (l-Nd) to take account of the materlal re-

moved for the bolt holes. We add no factor for stress concentration due to

the bolt holes though this could be significant for fatigue. The maximum

radial bending stress In the flange is then

ar = F_+H+Q_- BdB/ y_q (16)

The average bearing stress at the outer edge of the flange is

aR= (B - F)/e (17)

where e is the effective width of the bearing area.

4].2.3.2. Cylipder Stresses

The maximum axial stress in the cylinder at the junction of the

flange and cylinder is

= F/h + 6M/h 2 (18)
c

41.2.3.3. Bolt Stresses

The bolt stress is

a B = B/NA (19)

where N = number of bolts per inch

A = root cross-sectlonal area of bolts
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41.2.4. Examples

41.2.4a. We consider a flange with

t = 0.875 in. d ffi .438 in.

h = 0.125 in. _ = .610 in.

a = 10.06 in. b -- .270 in.

a = 10.66 in. J_ = .844 in.

N = 0.583 in -1 L = 1.114 in.

A = 0.150 in 2 v = 0.3

E ffi 28,000,000 ib/in 2 e ffi .14 in.

With F = 1,000 ib/in and p = 200 ib/in 2 what are the stresses?

First evaluating Eq. (13) we need

K I = (1/24) (4L2-4b2-_) = 0.1792 in2

K 2 = (I/24L) (12L2-4b2- 4) ffi0.532 in.

_3(l-v 2)/a2h 2 ffi1.147
in-I

Then Eq. (13) becomes

179.2 ffi-299.5M + 130.6Q

To evaluate Eq. (14) we need

KA = paa/EL ffi.000686 in

KB ffia_/tEL ffi.00000392 in2/ib

Equation (14) then becomes,

146.5 ffi-2.63M + 2.43Q

Solving (22) and (25) simultaneously gives

M = 48.6 Ib-in/in, Q = 112.4 ib/in

We now evaluate the flange hoop stress from Eq. (15)

e_ ffi(a/L) (Q/t + p) = 2960 ib/in 2

41-10

33

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)



The maximum radial bending stress in the flange from Eq. (16) is

_r = 6,200 Ib/in 2 (28)

where B = 4,580 ib/in (29)

from Eq. (6).

The average bearing stress at the outer edge of the flange is given by Eq. (17)

• R ffi (B-F)/e ffi 25,600 lb/in 2 (30)

The maximum axial cylinder stress (bending plus tension) at the junction of

flange and cylinder is obtained from Eq. (18)

_c = F/h + 6 M/h 2 = 26,620 1b/in 2 (31)

and the bolt stress from Eq. (19) is

_B = B/NA = 52,300 Ib/In 2 (32)

41.2.4b We consider a flange with the same total cross-sectional area as

that in 41.2.4a except that t = 0.500 in., L = 1.952 in._ b = i. i08 in. and
a = 11.07 in. In that case

2
K I = .416 in , K 2 = .862 in (33)

= 1.147 in-I (34)

Equation (13) becomes,

416 = -56.8 M + 24.2 Q (35)

We find,

KA ffi.000407 in, KB = .00000407 in2/ib (36)

and Eq. (14) becomes,

156.2 ffi -2.63 M + 2.43 Q (37)

Solving (35 and (37) simultaneously

M = 37.3 ib-in/in, Q = 104.6 ib/in (38)

31
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Evaluating the stresses now,

o = 2090 Ib/in 2 (39)
H

c = 24,700 1b/in 2 (40)
r

B = 1,820 lb/in (41)

uR = 5,800 lb/in 2 (42)

ffi 22,300 lb/in 2 (43)
c

_B = 20,800 lb/in 2 (44)

The radial stress, cyllnder stress and bolt stress are in better

balance here than they were in the first example.

35
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41.2.5. Discussion

Equations have been presented in this section for computing the

stresses in bolted flanges which have a slight lip so that they bear against

each other only near the inner and outer radii of the flange. Similar

equations are derived for flanges which are in contact in other ways in

Sections 41.3, 41.4, and 41.5.

The examples in this section show that changes in the flange dimen-

sions have a marked effect on the proportions of the different stresses. In

the examples considered, the flange stresses are relatively unaffected by the

cylinder restraint, while the cylinder stresses correspond nearly to full

restraint by the flange. Assuming this to be true could even simplify the

analytical approach further. The use of a short hub between flange and

cylinder could ease the high cylinder stresses there.

Since the cylinder has only a minor effect on the flange stresses it

would be a good approximation to use the same analytical approach even where

F is not axisymmetric. In such a case the largest value of F around the

circumference would be used in the equations.

36
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41.3 Flat Flanges

41.3.1. Introduction

Frequently flat flanges are used with a spacer between them (or a

small recess in their surfaces) to provide room for a seal. A sketch of

such a flange is shown in Fig. 41.3. As load is applied, the bolt stretches

slightly and the flange takes the shape shown in Fig. 41.4. The seal is

ordinarily so flexible in comparison with the flange that its load can he

neglected. (Where necessary its load can be considered as contributing to

the load F.) The seal prevents the fluid pressure from acting on most of the

flange face. The distance b from the bolt to the point of flange contact will

ordinarily increase with load F. The bolt load will also increase with F.

Both of these phenomena will be examined here.

The flange will again be considered to be adequately represented by

treating a radial strip between inner and outer edge as a beam in bending.

The bolt load, however, will be considered concentrated at the bolt circle

and not distributed over the bolt head in computing deformations. The

flanges will be considered to have no local flattening where they bear against

each other. Beyond the point of flange contact, beam theory requires the

bending moment and shear in a radial direction to be zero because the beam

deflection is zero.

37
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FIG. 41.4 Loads and dimensions
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41.3.2. Analysis

The radial deflection of the flange due to hoop stress is adequately

given by Eq. (3). The cylinder deflection due to pressure is given by Eq. (4).

The cylinder deflection due to moment and shear is given by Eqs. (8) and (9).

Equations are needed for the slope and axial displacement of the flange at

the junction of flange and cylinder.

We find that the axial displacement of the flange is given by

Yl = (I + (1 + 3)

b b2 (45)

and the bolt load by

B = F (i +_) + (M+ 2_) (l/b) (46)

Denoting the bolt stiffness by K (ib/in)/in of circumference and the initial

bolt stretch by _ , we find for b

b 3 = Et3 • [I ...._5_" F) b ] (47)

2K(1-V 2) L F_ + (H+Qt/2) J

where, K = NAE/t for a bolt completely through the flanges. A convenient

nomogram for determining a solution of Eq. (47) is given in Fig. 41,5. In the

example given in the figure, it is seen that a straight line joining the

value of Et3/ [ 2K_3(l-v2)_ to the value of [F + (M+Qt/2)_/(K_- F) inter-

cepts the b/_ curve at the correct value of b/_. It is of interest to note

that even for moderate values of F the value of b/2 is likely to exceed

several tenths.

by

The slope of the flange at its junction with the cylinder is given

g4 ffi E t3

Using Eqs. (8) and (9) we can show that in the cylinder

M = -(Eh/2a2_ 2) (Ul-U2) - (Zh/2a2_ 3) O4 (49)

Q = -(Eh/a2_) (Ul-U2) - (Eh/2a2_2)84 (50)

39
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To obtain a solution of the preceding equations we proceed as

follows. First we approximate 64 as zero and u I as KA from Eq. (3). Then

using Eq. (4) to obtain u 2 we obtain approximate values of M and Q from

Eqs. (_49) and (50). Using these values of M and Q and the known values of

F and _, Eq. (47) or Fig.41.5 gives b and Eqs. (3) and (48) give improved

values of u I and 64 . The cycle can be repeated if necessary, however,

convergence is very rapid.

In some instances we may find that the value of b exceeds the

maximum possible value bma x dueto flange height limitations. In that

event there is initial slope @ 5 at the contact point between flanges and

we use in place of Eq. (47) the equation

[i " [K(_+:esbmax)- F] bmax/_ 1
F + (M + Qt/2)/_ J

(51)

With a known value of (bmax/_) Eq. (51) can be solved for 0., the slope at

the reaction R(solution can also be done by use of Fig.41,5). _ In using

Fig. 41.5 for this purpose we lay a straight edge on the value of (bmax/_)

on the (b/_) scale and the value of Et3/ [2K_3(I-v2)] on its own scale and

read off the value of [F + (M + Qtl2)/_/ EK(5+ 85bma x) - F3 on the
IF + (M + Qt/2)/_ / _K5 - F] scale.

The slope of the flange at its junction with the cylinder is then

given by

06 = 04 + 05 (52)

where 04 is obtained from Eq. (48) using bma x for b.

The axial displacement of the flange at its Junction with the

cylinder is given by

Y2 ffiYl + 85 (bmax +_ ) (53)

where Yl is obtained from Eq. (45) using bma x for b.
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41.3.3 Important Stresses

Stresses in this case can be obtained from Eqs. (15) to (19).

Equation (16) for the radial stress in the flange takes account of the bolt

head diameter even though thls was not included in Eqs. (45) and (48) for

flange deformation. (In deriving Eqs, (45) and (48) it was felt that assuming

the bolt load concentrated at the bolt circle was in part compensated for

by neglecting the effect of the bolt holes on flexural stiffness.)

43
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41.3.4 Examples

41.3.4a. We consider a flange with

t = 0.875 in. d = 0.438 in

h = 0.125 in. _-- 0.610 in.

a ffi 10.06 in. L = 0.844 in.

= 10.66 in. bmx = 0.336 in (edge of flange
minus e/21

N = 0.583 in-I v ffi 0.3

A = 0.150 in2 e = 0.14 in.

E = 28,000,000 F = I000 1b/in

L = 1.114 in. (flange height p = 200 Iblin 2

in Eq. 31
5 = 0.00163 in.

This is the same flange as we considered in 41.2.4a excepting for the absence

of llps. Eqs. (23) and (24) still apply for KA and KB. The bolt stiffness

K = NAE/t = 2,800,000 1b/in 2 (54)

We determine

Et 3

2K_,3(i-v2)

= 6.1 (55)

From Eq. (4)

u2 = (_hl (pa-vF)ffi 0.00491 in.
(561

As a first approximation we take

ul(approx I) = KA = paa/EL = .000686 in.
(57)

and

94(approx i) = 0
(58)

Using (531 to (55) in Eqs. (49) and (50) gives

M(approx i) ffi-(Eh/2a2_21 (Ul-U 2) = 55.7(ib-in)/in (59)

and

Q (approx i) =-(Eh/s2_1 (Ul-U 2)

41-21
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We form

F + (m t/2)
"-- (approx i) ffi0.319 (61)K5 -F

The values in Eqs. (52) and (58) are beyond the range of the first chart in

Fig. 4.1._5but within the range of the second chart. They give b/_ = 0.317.

b(approx I) = _(b/_ ) = 0.267 in (62)

Since this value is less than b (max) we may proceed. Using Eq. (3) we get

ul(approx 2) ffiKA%KBQ(approx I) = 0.00119 in.

From Eq. (48) we get with (62), (59) and (60)

(63)

04(spprox 2) = .000325 radians (64)

Then Eqs. (49) and (50) give

Eh Eh

M (approx 2)ffi-(2-_2) _ul(approx2)-u2_ __)@4(approx 2)

ffi45.4 (Ib-in)/in

Q(approx 2) _a-_--] \ l(approx 2)- u2) -_2-_2) 4

(65)

(approx 2)

= 108.5 ib/in (66)

The changes in M and Q from approximation 1 to approximation 2 are small
enough to proceed with the value of b in Eq. (62).

We compute the axial displacement at the flange-cylinder junction

from Eq. (45)

Yl = 0.000205 in. (67)

and from Eq. (46)

B = 4510 ibs. (68)

The stresses are nearly the same as those in 41.2.4a since b, Eq. (62), has

nearly the value that was used there.

41-22
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41.3.45 This flange is the same as 1.2.4b except without lips. It differs

from that in Example 1.3.4a only in having t = 0.500 in, L = 1.952 in,

bma x = 1.174 in, a = 11.07 and 5 = 0.00037 in.

We find,

K = NAE/t ffi 4,900,000 ib/in 2 (69)

Et 3

2K _3(1-v 2 )
= 0.633 (70)

u2 = 0.00491 in. 471)

ul(approx I) = KA = paa/EL = 0.000406 in. (72)

@4(approx i) = 0

M(approx i) ffi-(Eh/2a2_ 2) (Ul-U2) ffi59 (Ib-ln)/in

Q(approx i) = -(Eh/a2_) (Ul-U2) = 136 ib/in

(73)

(74)

(75)

F + (M + Qt/2) l_ (approx I) ffi1.37
KS- F (76)

From Fig. 41.5 and Eq. (47) we get

(b/_) (approx i) = 0.683,

b (approx I) ffi0.576 in. (77)

This is less than bma x so we proceed. Using Eq. (3) we get

ul(approx 2) = KA , _ Q(approx I) : 0.000957 (78)

From Eq. 448) we get

84(approx 2) ffi0.00220 radians (79)

41-23
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Eqs. (49) and (50) give

M(approx 2) ffi 26.8 (lb-in)/in

Q(approx 2) = 90.5 lb/in

(80)

(81)

The changes in M and Q in going from the first to second approximation are

substantial, however, not enough to indicate a need for a third approximation

in so far as the value of b and the major stresses are concerned. We

therefo_proceed with the computation of axial displacement at the flange-

cylinder junction from Eq. (45)

Yl = 0.00151 in. (82)

and from Eq. (46)

B = 2550 ibs. (83)

The stresses will be nearly the same as those obtained in Example 41.2.4b

except for the bolt stress.

_B = B/NA = 29,100 Ib/in 2 (84)
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41.4 Dished Flanges

A dished flange is essentially the same as the flange with lips

discussed in Section 41.2, excepting that the lip is quite shallow. From a

design point of view it is desirable to have an equation for the necessary

flange clearance under the bolts. This equation is obtained with the same

assumptions used in deriving Eq. (45).

_2 iv2 [ I )]Yb 2b_2F + (M+Qt/2)b_ 3_ + 2b
Et 3 _ + b

For most flanges this will be a small deflection.

(85)

Example 41.4a. Consider the flange in Example 41.2.4b and determine the

necessary clearance to provide for springing under the bolt. The values of

that example when substituted into Eq. (85) give

Yb = 0.00090 in.
(86)
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41.5 Warped Flanges

In some cases a flange may be somewhat warped out of a plane at the

junction of flange and cylinder. In that case additional local bolt force

will be required to bring mating flanges together. We can determine the

relation between cylinder tension F and displacement for a warped-end cylinder

from Sec. 46 when the warping can be adequately described by considering it to

vary as cos 20 around the circumference. In that reference it is shown that

in order to correct a warping of amplitude

w = w cos 20 (87)
max

an additional force

Fvariable = Fv.max cos 20 (88)

is required, where,

Fv.max = E Wma x_O. 681_(I + 0.670 a/h)] (89)

Example 41.5a. Determine the additional force Fv.ma x to flatten a warping of

0.01 inch = w in the cylinder of Example 41.2.4a.
max

F = 840 Ib/in (90)
v. max

It is seen that this additional force is comparable to the uniform force of

I000 Ib/in in Example 41.2.4a and therefore results in proportionate increases

in stress.
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42. FLANGE JOINTS WITHOUT CONTACT OUTSIDE THE BOLT CIRCLE

by

S. Levy

42.0 Summary

The more frequently used basic equations applicable to the design of

flanged joints without contact outside the bolt circle are assembled here.

For a more extensive treatment the reader is referred to Refs. i, 7, 9, I0,
and 13 of Section 40.

Equations are also presented for axisymmetric pipe deformation. For

thin-wall pipes these agree with those usually found in books on shell

theory. For thick-wall pipes, however, they include the increased flexibility

resulting from shear deformation of the pipe wall. This increase is minor

for most pipes of interest in missile piping systems.

Flanges designed by this procedure may be compared with flanges

designed by the procedure of Section 41 to determine which design is preferable

for a particular application.
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42.1 Introduction

Flanged joints have been extensively considered in the literature as

described in Section 40. The treatment can be considered as involving:

(I) the determination of the deformation of the flange, treated as

a ring

(2) the determination of the deformation of the pipe

(3) the interaction between pipe and flange

We will present here the equations which are applicable when the flange is

considered sturdy enough to be free of cross-sectional distortion. For the

pipe we will present equations for the thin-wall case and for the case where

the wall is so thick that shear deformation in the wall must be considered.

An example of the use of these equations is given in Section 44.4 and in

Section 13.3.5.

The question of whether to use a flange which contacts outside the

bolt circle, as described in Section 41, or to use a flange which does not,

as described here, must be answered on the basis of overall design consi-

derations. It seems likely that a weight saving can be achieved by using

flanges which contact outside the bolt circle whenever the pipe is of

relatively large diameter. Use of such flanges, however, affects the choice

of gasket, the outer flange diameter, machining costs, and perhaps other

factors such as assembly procedures. The final choice must therefore be

made after all factors have been given full consideration.

cO
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42.2 Twisting of Flange by Couples Uniformly Distributed Along Its Center-
line

For the flange we will follow closely the theory presented by Timoshenko

on pages 177 to 180 of Ref. i° We consider here a flange which is sturdy

enough to be free of cross-sectional distortion. The flange may include the

hub in those cases where the hub length is less than about half_avhav where

aav is the average hub radius and hav is its average thickness.

The behavior of the flange ring is illustrated by Fig. 42.1. Taking

half the ring (upper figure) as a free body, from the condition of equilibrium

of moments about the diameter ox, there must be a bending moment on each

cross-section m and n of

MT -- (I)

where a is the radius to the center of gravity of the cross-section and M t

is the twisting couple per unit length of the center of gravity circle due to

bolt force, internal pressure, gasket force, and pipe forces. The pipe

forces include a moment and a shear as well as axial tension due to hydro-

static pressure or other axial forces on the pipe.

We consider now the deformation of the ring. From the condition of

symmetry, each cross-section rotates in its own plane through the same

angle @. Let C (lower figure in Fig. 42.1) be the center of rotation (center

of gravity) of the cross-section and B a point in the cross-section at a

distance p__from C. As the cross-section rotates, the point B describes a

small arc BB I = 00. Due to this displacement the annular fiber of the ring,

which is perp_.__endicular to the cross-section at the point B, increases its

radius by B2BI° If the coordinate axes are taken as indicated, we have from

the similarity of triangles BBIB 2 and BIN]

BIB2 = _ DB = 00 y = @y (2)

Let us consider first the case in which the cross-sectional dimensions

of the ring are small in comparison with the radius a to the center of gravity

of the cross section. Then the radii of all ring fibers may be taken equal

to a without great error and the unit elongation of the fiber B, due to the

displacement given by Eq. 2, is

ffi @y/_ (3)

The corresponding stress is

o ffiE@y/_ (4)

Now from the equilibrium of the half ring, the moment of all the normal

forces acting on the cross-section of the ring about the x-axis must be

equal to M T (see Eq. I). If dA denotes an elemental area of the cross-

section, the equation of equilibrium becomes
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FIG. 42.1 - Flange ring showing

moments and rotation
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fg =/( Eel
M T = ydA EOy2/_)dA =_.__x (5)

where the integration is extended over the cross-sectional area A and Ix
is the moment of inertia of the cross-section of the ring with respect to

the x-axis. Combining Eqs. (5) and (I)

0 = (MTa/EI x) = (Mta2/El x) (6)

Substituting Eq. (6) into Eq. (4)

o = Mtay/I x (7)

The distribution of the normal stresses over the cross-section of the ring

is the same as in the case of bending of straight bars; the stress is

proportional to the distance from the neutral axis x and the maximum stress

occurs at the points most remote from this axis.

Considering a flange ring of rectangular cross-section (Fig. 42.2)

whose width b is not small in comparison with the radius a of the centroid

of the cross-section and assuming that the deformation consists of rotations

of the cross-section without cross-sectional distortion, let 0 be the angle

through which the cross-section rotates. The elongation of a fiber at radius

r and the corresponding stress are

e = Oy/r; a = EOy/r (8)

The equation of equilibrium analogous to Eq. (5) is

?12/dy (E0y2/r)dr = M T

c

(9)

Integrating gives

MT = (g0t3/12)loge(d/c)
(i0)

from which

imT 12 Mt
o = = (11)

Et31Oge (d/c) Et31Oge (d/c)

With Eq. 8,

12MTY (12)o =

31 (d/c)
rt og e

The maximum stress is at the inner corner of the flange where r=c and

_t/2 _ "
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6MT 6aM t
= = (13)

amax ct21Oge(d/c) ct21Oge(d/c)

If b/c is small, Eqs. (ii) and (12) reduce to Eqs. (6) and (7).

The radial displacement of the flange at its point of attachment to

the pipe results from the combined action of internal pressure, shear from

the pipe, and rotation of the cross-section. Referring to Fig. 42.3, the

radial outward deflection of the flange is given by

u I : (acp£flEAf) + (aaQIEAf) + g£fp (14)

where Af is the area of the flange cross-section and p is the internal
pressure.
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42.3 Deformation of Pipe

With cylindrical shell theory it can readily be shown that the slope

and deflection of the wall at the end of a long pipe due to pressure and

an axisymmetric moment M_ shear Q and tension F per inch at the mid-thickness

(Fig. 42.3) is

U 3 = (2a2_2/Eh)M - (2a2_/Eh)Q + (a/Eh) (pa-vF) (15)

O3 = - (4a2_3/Eh)M + 2(a2_2/Eh)Q (16)

where

64 = 3(l-v2)/a2h 2 (17)

In the case of a thick-walled pipe the deflections given by Eqs. (15)

and (16) are somewhat less than the actual deflections (Ref. 2). The

corrected equations are

u3 = (2a2_2/Eh)M -VI.0 + .59 h/a (2a2_/Eh) Q + (a/Eh)(pa-vF)

(18)

03 = -A/I + .59 h/a (4aP]B3/Eh) M + (2a2]B2/Eh) Q (19)

for Poisson's ratioV= 0.3. It is seen that as h/a approaches zero the

equations reduce to Eqs. (15) and (16). The ratio h/a is approximately

equal to the ratio of internal pressure p to material allowable stress aa.

For a pressure p of 5,000 psi and an allowable stress oa = 50,000 Dsi.

h/a is approximately 0.i. In this case the correction term, Vl+.59h/a = 1.03,

has a negligible effect.

5S
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FIG. 42.3 - Flange cross-sectional dimensions
and loads related to interaction with
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59

42- 91



42.4 Interaction of Flange and Pipe

The forces and moment arms for determining the twisting couple, Mr,

per unit length of the center of gravity circle are shown in Fig. 42.4.

From this diagram

Mt = M(a)+ Q_fp(a)+ p{_a)_f(_fp__f/2)+ B la____flf + G (___)g + F (a_)(a-a)

In this diagram

and

B is the bolt load per unit length at the bolt circle

G is the gasket force per unit length at the gasket circle

e is the distance over which direct pressure can act on the flange

below the gasket

Using Eqs. (20), (ii) and (14) gives the flange displacement, ul, and the

flange rotation, 8, at the junction of pipe and flange as a fun6tion of

M and Q. Likewise using Eqs. (15) and (16),:for (18) and (19) if applicable,

gives the pipe wall displacement u3 and pipe wall rotation 03 as a function

of M and Q. Equating

u I = u 3 (21)

and 0 = 0B (22)

gives the two equations from which M and Q are determined. Having these

and the given loads permits the determination of all deformations and

stresses.

60

42-10



B

m

f

G W

e p_

_ Center of gravity

! h PF_ _fp --

_F

a

FIG. 42.4 - Forces and moment arms for
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42.5 Discussion

Equations have been presented for determining the behavior of the

flange and pipe and their interaction. These equations permit the design

of flanges which are not in contact beyond the bolt circle when the required

gasket load_ internal pressure, and pipe load are specified.

G2
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43. BOLT SPACING

by

J. Wallach

43.0 Sunmmry

The optimum design is to have a uniform contact pressure between bolts.

This condition is approximated by making the contact pressure half way between

two bolts equal to the maximum contact pressure which occurs at the bolt

hole edge. Using the curves in Figures 43.1, 43.2, and 43.3 and applying the

above rule a bolt spacing of 1.6 to 2.7 times the bolt hole diameter is obtained.

These numbers are in the same range as those stated in Section 40.4. This

criterion suggests a bolt spacing smaller than that permitted by wrench clearance

in nearly all the cases considered. It would appear optimum, therefore, to

place bolts as closely together as wrench clearance permits insofar as uniformity

of clamping is concerned.
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43.1 Introduction

Any analysis of, or design procedure for, bolted flanges has concerned

itself with bolt spacing. However, very little analytical or experimental

work on the subject is available in the literature. Most articles on flange

design offer "rules of thumb" for bolt spacing. These usually call for a

close bolt spacing allowing sufficient space for wrenching the bolts.

C.R. Soderberg analyzed the effect of the distance between bolts on the

flange-to-flange contact pressure, Ref. I. The model he chose was a point

load on an infinitely long beam on an elastic foundation. The analysis in

this section goes a step further and considers a uniformly distributed load

on an infinite circular plate with a hole in the center and on an elastic

foundation. The flat plate

F r2 r14

_Bolt centerline

h

is assumed thin, the elastic foundation approximates the compressibility

of the flat plate and the flange interface remains flat. r I and r2 are the

inside and outside radii of the contact area between the bolt and flange.

The loading and geometry are symmetric about the bolt centerline.

This approach includes many simplifying assumptions. By assuming an

infinite plate, the pipe structure and loads, and the finiteness of the

outside flange diameter are neglected. Also not included are: flexibility

of the bolt head; deformations of the flange due to shear in the vicinity

of the bolt; and the factthat the flanges are not ordinarily in contact

under the bolts because of the presence of gaskets. Nevertheless it seems

reasonable that a good bolt spacing for the simplified problem considered in

this section may also be good for other cases.

The usual flanged joint analysis considers only axisy_netric geometry

and loading. No consideration is given to the finiteness of the bolt spacing.

From the flanged joint analysis it is possible to calculate the bolt load

per inch of circumference and the load per bolt. Also the amount of flange

separation may be determined. Then using these results with the analysis

contained in this section it may be possible to determine the variation in

flange separation between bolts.

G5
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43.2 Discussion

The flange-to-flange contact pressure is given by equations (9) and

(107 in terms of arbitrary constants which are obtained from equations (117.

The contact pressure is a function of the load intensity (qT, inside and

outside radii of the loaded area (rI and r2) , plate thickness (h7 and Poisson's
ratio (V). The metals of interest have a Poisson's ratio of about .3.

Therefore, this parameter may be considered constant. Also, from the equations

it is obvious that the contact pressure varies directly as the load intensity.

However, the effect of changes in rl, r2 or h on p are not so obvious. There-
fore, a set of calculations of p versus the radial distance from the bolt

centerline (r) were made. A one-pound bolt load is used throughout, but rl,
r2 and h are varied.

The results of the calculations are presented as three sets of curves.

Fig. 43.1 shows that increasing the inside bolt radius, rl, and head radius, r2,
simultaneously increases the area of contact between the bolt and flange

and results in a lower contact pressure under the bolt. However, the increase

in radius increases the area of contact pressure (between the flange faces7

only slightly. As a result the contact pressure at a particular radius

increases as the inside radius is increased. In contrast increasing the head

radius, r2, while holding the bolt radius, rI constant, Fig. 43.2, shows a

decrease in the contact pressure close to the bolt and an increase at larger

radial distances. The effect is a wider distribution of the contact pressure

as the outside radius, r2, is increased. A similar, but more pronounced,

effect is obtained by _nrr_=_,_ _h_ _I ..... _-i ..... h, Fig. 43.3. The

results of the three sets of curves may be summarized by stating that by

designing for the required inside radius, rl, a large outside radius, r2, and
thick flange, h, the maximum distance between bolts may be obtained.
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43.3 Analysis

The contact pressure between the two flanges is determined by an

analysis of a plate on an elastic foundation. The load is due to the bolt

and is applied uniformly over the area of contact between the bolt and flange.

This area of contact is a ring. The plate is a thin circular plate with the

bolt hole in the center and an infinite outside radius. The elastic foundation

is uniform and is determined from a consideration of the compressibility of

one-half the plate thickness. One-half the plate thickness is used, because

the plate equations are for the deflection of the mid-plane of the plate.

The flanges are assumed symmetric about the plane of contact of the flanges

and, therefore, this plane of contact remains plane.

bolt centerline_
-II

r3. =

rI

r

Nomenclature :

C Constant of integration

D Flexural rigidity of plate

E Modulus of Elasticity

F1,F2..F 8 Arbitrary constants

h Plate thickness

K

M

q

inch Ib

psi

Spring constant of foundation

Bending moment

Bolt head to flange contact

pressure (assumed uniform)

inch

Ib/inch 3

inch ib/inch

psi
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P

Q

r

w

x

v

Flange-to-flange contact pressure psi

Shear Ib/inch

Radius inch

Deflection inch

Argument of E function

Functions defined in Ref. 2

Poisson's ratio

The differential equation for a plate on an elastic foundation is

derived and solved in Section 30 of Ref. 2. The differential equation is:

d4w+ 2 d3w I d2w + I dw Kw -

dr 4 r dr3 r 2 dr 2 r-_ d-_ +_ =
0 (1)

where

E h3
D = (2)

12 (I - V 2)

2E
K = _- (3)

w = _K + CI El (x) + C2E 2 (x) + C3_3(x) + C4B4(x) (4)

where

x = (K/D) 1/4 r (5)

and the E functions are given by equation (79), page 103, Ref. 2.

The plate is separated into two parts.

I r I __r _r 2 q finite

II r 2 __r-= r3 q = 0

This means two solutions of the form of equation (4) with eight arbitrary

constants. The boundary conditions are:

Id2w v dw )Bending moment: M r = -D _r2 + r _r = 0, when r = r I

(6a)
d3w

i d2w I dw = 0, when r = r I

Qr = -Dl_r3[ + r dr 2 r2 dr

Shear:

43-8
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Deflection:

Slope:

w I = Wll, when r = r2

dw I dWll

d--r--= d_ ' when r = r2

Bending moment:
IMr_.. = _r I ' when r = r2

(6b)

Shear:
{Qr_ ffiIQr_ when r = r 2

Deflection :

Slope:

Wll = 0, when r -+ _o

dWll

dr = 0, when r -+ _o

(6c)

The deflection equations for each part of the plate are then written

in the following form:

Wl =_{I + F5ZI + F6Z2 + F7E3 + F8E41 (7)

WlI=_IF3Z3 + F4_41 (8)

where FI and F2 are zero because of conditions (6c).

The flange-to-flange contact pressure is equal to the plate deflection

times the spring constant of the foundation.

pl = q [i + F5Zl + F6Z2 + F7E3 +F8Z4] (9)

Pll= q [F3E 3 + F4E4] (I0)

The F's are determined by applying the boundary conditions at r I and r 2 to
equations (7) and (8). The resulting set of linear simultaneous equations

may be solved for the constants by any standard method of solution. The

equations are:

Z3(x2)F 3 + E4(x2)F 4 -. ZI(X2)F 5 - Z2(x2)F 6 - E3(x2)F7 - Z4(x2)F 8 = I

dE 3 (x 2) dE4 (x2) d_ I (x2) dE 2 (x2) dZ3 (x2)

dx F3 + dx F4 dx F5 dx F6 dx F7

43- 9
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dE 4 (x 2)

dx F 3

d_. 3 (x 2) dE 2 (x 2 ) dZ 1 (x 2 )

dx F4 dx F5 + dx F6

dE 4 (x 2) dE 3 (x 2 )

dx F7 + dx F8=0

dE 3 (x2) l

[

[_ -1-v dZl (_2)

+ _'2(x2 ) + x 2 dx

_ I- V dE3 (x2)"+ Z4 (x2) + x 2 dx

+

F 5 +

F 7 +

-z3 (x2)

Zl(X 2) +

Z3(x 2) +

Ix2 -- . F4

l-v d_'2(x2) ]x 2 dx F6

dE 4 (x2)l

l-Vx2 _ IF8 = 0

d_'2(xI) dZl(X I)

dx F5 dx F6 +

dE 4 (x I) d_-3 (xI)

dx F7 dx F8 = 0

l-v d_'l(Xl) IF 5E2 (Xl) x I dx +

z dZ3(xl)]+ l-v _ jF 74(Xl ) x I

dE 2 (Xl) l

l-v _ /F 6"Zl(Xl) x I

- [ l-v _" IF 8+ -Z 3 (:<i) x I
=0

Note that the F's are a function only of rl, r2, h and v. As V = .3 for
aluminum and is a good approximation for steel, V may be held constant.

In order to show the effect on the contact pressure of changes in

rl_ r2 and h, a set of calculations were made of contact pressure versus

radius for various values of these parameters given in Table I.

TABLE I - Parameters used in analysis

Case r I r h
inch inc_ inch

i .2 .4 .7206

2 .3 .5 .7206

3 .4 .6 .7206

4 .5 .7 .7206

5 .3 .4 .7206

6 .3 .5 .7206

7 .3 .6 .7206

8 .3 .7 .7206

(ll)
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TABLE I (continued)

Case r I r2 h
inch inch inch

9 .3 .5 .6

i0 .3 .5 17

II .3 .5 .8

12 .3 .5 .9

A one-pound bolt load was used, so

i
q -- (12)

_(r22-rl 2)

The results are presented in Figures 43.1, 43.2 and 43.3 in the form of three

sets of curves. In each setytwo parameters are held constant and one is

varied.

In Table 2,the results are summarized. The radius r at which the

flange contact pressure is half its value at r I is also given as well as

the ratio (2r/2rl). For a bolt spacing of 2r it seems likely that the

contact pressure between flanges will be nearly uniform. The ratio (2r/2r I)

varies from 1.61 to 2.65 for the cases considered. It should be noted,

however,that in most cases this criterionwould place the bolts too close

together for use of a wrench. Wrench clearance is,therefore,the governing
criterion.
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Radius r where

ratio (2r/2r I)

of bolt head

h rI p(rl)

•7206 .2" .95

.7206 .3 .85

•7206 .4 .77

•7206 .5 .69

.7206 .3 .980

.7206 .3 .85

.7206 .3 .74

.7206 .3 .64

.6

.7

.8

.9

TABLE II

p(r) is one-half P(rl), bolt
and difference between r and

dimensions and plate thicknesses.

spacing 2r,

r2 for a range

r p(r) 2r r2 2r/2r I r-r 2

.53 .47".5 1.06 .4 2.65 .13

.615 .425 1.23 .5 2.05 .115

.715 .385 1.43 .6 1.79 .115

.805 .345 1.61 .7 1.61 .105

.59 .49 1.18 .4 1.97 .19

.615 .425 1.23 .5 2.05 .115

.66 .37 1.32 .6 2.20 .06

.71 .32 1.42 .7 2.36 .01

.3 1.09

.3 .90

.3 .74

.3 .62

._7 •545 1.14 .5 1.90 .07

.6! .45 !;22 .5 2.O3 .ii

.65 .37 1.30 .5 2.16 .15

.70 .31 1.40 .5 2.33 .20

J
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44. CRYOGENIC CONNECTOR CONSIDERATIONS

by

S. Levy

44.0 Summary

The effect of seal and bolt length on relative expansion effects is

presented. It is shown that differential expansion between bolts and flanges

is a primary cause of gasket load changes. The "elastic springback"

available in a connector to moderate relative expansion effects is shown

to be directly proportional to the amount of material used and the level of

stress achieved during bolting. It is found that high "elastic springback"

is not necessarily desirable since it may be desirable to have the gasket

load increase substantially at low temperatures. Transient temperature

conditions during cooling are shown to give rise to somewhat increased

temporary leakage possibilities. Pertinent mechanical-property data on

materials which might be used in connectors are provided.

Bolted flange connectors are considered in some detail and it is

shown for the cases chosen that the gasket load does not change much even

when the bolts and flanges are made of material with substantially different

expansion properties. For heavier flanges the effect would be greater since

the "elastic springback" in the flanges could be kept lower.

It is concluded that an important secondary cause of cryogenic

leakage is a failure to increase the gasket load in proportion to the

increase in hardness of the gasket material. Aluminum bolts in steel

flanges are &ndicated as one way of increasing the gasket load during

cooling. A more substantial increase is shown to be attainable with invar

rings. 77
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44.1 Introduction

Connectors which perform satisfactorily at room temperature may leak

when suddenly cooled by cryogenic fluid. The leakage is usually due to

differences in relative expansion. Where different parts of the connector

do not have identical shrinkage, a release of sealing pressure may occur.

In addition, a transient condition arises initially. Due to the high rate

of cooling by the cryogenic fluid, the inner walls of the connector are

cooled more rapidly than the outer portions. In particular, the bolts in

the case of a flanged connector, or the outer nut in the case of an AN

fitting, will cool more slowly. As a result the inner portions of the

connector tend to shrink away from each other and thus release pressure on

the seal during the initial stages of rapid cooling.

An additional difficulty in designing connectors which will stay

tight as the temperature changes is that the mechanical properties vary with

temperature. Thus the expansion of copper per unit length in going from

100°R to 200°R is about 0.0005_ while from400°R to 500°R it is .0009.
Similarly for Teflon from -400 F to -300°F the unit expansion is 0.0030,

while from 0°F to 100°F it is 0.0088. Conductivity and specific heat also

have marked non-linearities. Strength and modulus of elasticity rise with

reduction in temperature while elongation at failure tends to be lower as the

temperature drops.

Eiastomers have been shown, Refs. I a_d 2, Lu E=L_vLu, w=_ ....... b_

at temperatures in the 76° to 300°K range. Materials used include Viton-A(R),

Hypalon (R) and neoprene. In Ref. 2 both 0-rings between tongue-and-groove

flanges and 0-rings between flat flanges are considered. These references

show that when the initial compression exceeds 70 to 90% it is possible to

achieve tight seals. The seal material tends to shrink about three times as

fast as the metal as the temperature goes down but the high pre-compression

maintains an adequate sealing pressure. With proper flange design it is

suggested that it may be possible to use flange flexing to reduce the rate of

force decay during cooldown. The authors point out the importance of keeping

the final gasket thickness to a minimum in order to minimize shrinkage effects.

In this connection they suggest a seal in which a raised ring (.042" radius)

on one flange presses into a 10-mil mylar film on the flat opposite flange.

The initial compression is sufficient to reduce the mylar thickness to 3

mils.

In Ref. 3 the use of Teflon O-ring vacuum seals is described. The

0-ring is contained in a groove in one flange and is initially compressed to

achieve a i0 to 15 percent volume reduction. Lock-washers are used under the

bolts in this connector design and may provide some "follow-up" as the gasket

shrinks - at least until the flanges bottom against each other. The authors

observe that when leakage occurred in this connector it was usually during

warm-up of the test assembly.

The concept of "temperature energizing" seals is considered in Refs.

4 and 5. It is pointed out that the excessive shrinkage of the seal can be

partially compensated for by containing the seal between an inner invar ring

and the flanges. Because the invar ring contracts much less than the
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flange material during cooling, the space available to the seal decreases at
about the samerate as the seal shrinks. In the design described by the
author, either stainless steel or aluminumis suggested for the flanges.
Adiprene C polyurethane rubber or neoprene Wis suggested for the gasket
with additives giving a hardness of 70 durometer A. Either invar or titanium
is suggested for the inner ring. The author points out that near room tem_
perature such a design has pressure-compensating characteristics also.

The temperature distribution in a joint will be non-uniform during

the initial transient cooling period. As pointed out in Ref. 6, however, it

may be non-uniform even after a steady-state condition is achieved. At

temperatures below the freezing point of air, the outside of a pipe carrying

liquid hydrogen is coated by a slushy condensate consisting of solid air,

ice, and liquid air. With a 15 mph wind only the dry solid air is visible•
Heat transfer rates of 3500 and 6000 BTU/hr-ft 2 were observed by the author

for zero wind and 15 mph wind respectively when there was enough pressure

in the pipe to maintain single-phase flow (about I00 psi). With heat flows

Of this magnitude, a temperature difference through the connector of about

50OF is possible in the case of stainless steel and somewhat less for aluminum

alloy.

LOX compatibility is of primary importance. The behavior of materials

in this regard is discussed in Ref. 7. It appears that all of the elastomers

which are found in Refs. I, 2 and 4 to be good low-temperature gasket

appears that there is a need for additional materials that are relatively

soft at low temperatures.

79
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44.2 Thermal and Mechanical Properties

Typical thermal and mechanical properties taken from Refs. 8 and 9

are shown in Tables 44.1 to 44.4. An outstanding characteristic of these

tables is the large variation in properties with temperature.

Expansion properties, Table 44._ are about five times as great for

the "seal" materials as for the metals. In addition the change in length

per 100°F is approximately twice as great near room temperature as it is

at very low temperatures for all the materials listed.

Conductivity, Table 44.2, is more than twice as high at room tempera-

tures as it is at very low temperatures. In addition the conductivity of

the metals is many times more than that of the "seal" materials.

Both Young's modulus, Table 44._ and strength, Table 44._ are almost

an order of magnitude greater at very low temperatures than they are at room

temperatures.

In Tables 44.5 and 44.6 from Ref. i0 are given the modulus and stress

relaxation values for Allpax 500. The effect of thickness on modulus at

-320°Fis so different from that at room temperature that additional tests

seem to be needed. The effect of cycling is shown and indicates an increase

in modulus of about I0 percent with cycling - the major increase occurring in

the first cycle. The effect of cycling on stress relaxation is essentially

to decrease the relaxation after the first few cycles. The relaxation after

20 minutes at -100°F and at -320°F is negligible,while that at room temper-

ature is about i0 percent on the first cycle.

8O

44-4



..=
4-I

0

X

r_o

,.-.1

,...1 u_

o ¢J

_,z:l

v

0
0

oo

o
0
o_

oo

0

o
0

I

o
o

I

o
0
t_

!

o
o

0
o
-.,1"

I

I o
, .,,1-

I

o o

o o o
0 0 o

o

! ! I'

o,I o'1 04 04
o 0 o 0
o 0 0 0
o 0 0 o

I ! I I

cq a0 04
0,4 _o u'%

0 0
o 0 o

I I I

,-I ,,.o a0 o_
,--4 0 0

0 0 o 0
o 0 0 0

I I I I

0 0
o 0 0

o _o ce_ u'_
c,4 i-=4,

o 0 0 o
o o 0 0

I I I I

I I I

.-_ u-_ -,1"
00 04 o_
,.-I ,-i 0
o 0 0

I I I

i'_ ,4:) co o_
_1 o'_ ,-i I..-I
o o 0 o
0 o 0 0

I I I I

u-_ u'3 00
t,_ 0

o 0 0

I I I

04 ,-4 0 04
t_ "..1" 04 04
0 0 0 0
0 0 0 0

°

I '1 I I

04 ,=.=1 ,.-I
0 0 0

I I I

o I=l r.:.
,.-4 o 0

t_ e,I o c,,I
¢_ • .._,- CXl o,i
o o o o
o o o o

I I I I

o,) .1-I o_

tm :n o o

44-5 8 1



H

C3

r.3
H

O
O

O
O

O_

O
O

O

O

r-4_

O
CO

O

O

O

O

O

O

C0

O

eq

o')

O

o
co

c'q

o

_4 00

co O
c0 r._
o o o'_ O

o Q tt_ u_

0q
O

0 _ _ _4
0 -,-4

u_ ,-4 _
Q; p_ _J ,-4

82

44-_ 6



Iolt 
0 _
0 o ,-..I
,-4

cy_

,-.]

,..]

U
I-4

o
0 0

e e

,--I

o u_
0 ,-4 _ c_l

, ,-¢

0 0 0
0 o'I co c_

! ,-4

0 Lt_ 0
0 .,,.I- ,-4 r_

i ,-4 ,-_

o o o
o co _'_

I ,--I

o 0 o

! ,-,4 ,-i

t.

,-'4
',.0

O0

r._
o o

E_

,.-4

0

4-1 '4-1

83

44- 7



0
0

0 o
0 0
0 0

0
0

o

0 0 0
0 0 0
u-_ o o

0 0 0 o
0 0 0 o
oq o 0 co

_" g g c_

r_,

[-.i

0
0

i

0
0

!

0
0

i

0
o

!

o

!

0 o 0
o 0 0
0 0 r,.

0 0 0
o 0 o
u-_ o Lr_

i

o
0
0

0
0
0

G

tO

0
¢_ ,"-¢ 0
4-1 _ v-i
ca ¢_

44-8



TABLE 44.5

\

\

Thickness

1/32"

II16"

118"

1/32"

I/16"

i/8"

Tem_ •

RT

RT

RT

-320°F

-320°F

-320°F

MODULUS OF ALI_AX500

Modulus at

Ist Cycle

1500psl Stress

2nd Cycle 10th Cycle

29,400 33,400 33,400

28,500 32,800 33,900

25,800 31,900 35,000

24,400 43,400

27,400 44,200

24,300 34,300

38,400 52,700

3i, 500 53,400

38,700 57,600

35,200 38,700

47,400 51,700

34,000 45,200

50,500

49,200

48,100

56,200

60,000

60,800

49,400

66,200

60,300

44-9

175,000 190,000 199,000

190,000 190,000 199,000

155,000 175,000 182,000

83,600 108,500 114,000

103,000 108,000 135,000

94, 600 98,600 128,000
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44.3 O-Rings between Flat Flanges (Contactin_ outside the bolt circle)

The Cryogenic Engineering Laboratory of the National Bureau of Standards

has had good results using an 0-ring seal between flat flanges, Ref. I. The

O-ring was stretched slightly over a short stainless steel retaining sleeve

which fit snugly inside the flange and prevented inward extrusion during the

flange tightening. A flange design which they found gave good sealiqg with

55 to 70% compression of the 0-ring is shown in Fig. 44.1. Designed for use

with a 2.5-in. pipeline, the flanges were made in 321 stainless steel with

flange faces 0.200 in. thick. Ten 1/4 in. steel bolts equally spaced on a

3.345 in. bolt circle drew the flanges together. The 0-ring was 1/16 in.

thick prior to compression.

We will now examine the stresses and deformations in this connector:

I) at room temperature

2) at 76°K (137°R)

3) at transient conditions to 137°R from room temperature

We make use of the analysis procedure for flanges contacting outside

the bolt circle, Section 41. We know that the initial bolt tightening is

sufficient to compress the 1/16 in. 0-ring to about 0L02 in. Equations (45)

and (53) of Section 41 show that

= [F_(I+_){ I÷ bmaxl
Y2 + -_'-':| 05 (bin+axe)

_' J

where Y2

F

95

b
max

M

Q

E

V

(i)

= axial displacement of flange of gasket = 0.02/2 = 0.01 in.

= sum of axial force on flange from pipe and gasket (Ib/in)

= slope of flange at contact with other flange (rad)

= distance from bolt circle to gasket circle (assumed same as

pipe circle here) 1.672 - 1.240 = 0.432 in.

= maximum value of b. We take it as 0.04 in less than the

distance from bolt circle to outer edge = (2-1.672)-.040 = 0.288

in. to allow for some local crushing

= moment between pipe and flange (Ib-in)/in

= shear between pipe and flange (ib/in)

= Young's modulus = 30,000,000 ib/in 2

= Poisson's ratio = 0.3

t = flange thickness = 0.200 in.
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FIG. 44.1 - NBS Flange Dimensions (Ref. i)
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We have assumed that when the flange deflection Y2=0.01 in. (half the

available 0.02 in. for each flange) the applicable equations of Section 41

correspond to bearing between flanges near their outer edge. It is assumed

that the flange thickness is such that the contribution of its hoop stretch

in resisting rolling is negligible. (This assumption is confirmed in 44.8,

Appendix A.) Then Eq. (51) of Section 41 gives,

Et3 [1- ¥ J(_I: 2K_3 (1"V2) [K(Sq4)sbmax) - F] (bmax/_)l

where

b
max

(2)

= maximum value of b.

K

We take it as 0.04 in less than the

distance from bolt circle to outer edge = (2-1.672)-.040 =

0.288 in. to allow for some local crushing

bolt stiffness per unit _ircumference = NAE/t =
I0/(_x3.345) (_/4) (.25)_ (30,000,000)/0.2 = 7,000,000 Ib/in. 2

initial bolt stretch (in the absence of flange separation) =

0.003x0.2-_ = .0006-_ in. (assuming an initial bolt strain

of 0.003 corresponding to a bolt stress of 90,000 Ib/in _

and an unstretched lack of bolt bottoming£_ to be determined)

The relation between bolt load and axial force is given by Eq. (46) of

Section 41 as

B = F(l+_]b) + (M+Qt/2) (l/b)

where

B = bolt force per unit circumference:= 10x(_/4)(.25)

(3)

x 90,000/(3.345_)=

4200 ib/in

The slope of the flange at its junction with the cylinder is given

by Eq. 52 of Section 41 as

@6= 6(l;v2_2F(l+b/_)+Ett (M+Qt/2)(2+b/_)]+ @5

Values of M and Q can be obtained from Eqs. (49) and (501) of Section 41 with

@4 replaced by @6" It will be assumed here that the wall is thin enough to

approximate M and Q as zero. (In 44.9, Appendix B, a check is given on the

assumption that M and Q have a negligible effect.) Then from Eq. (3)

4200 = F(I+0.432/0.288); F-- 1680 ib/in. (5)

From Eq. (2)

 ,7,ooo, =t7" " "
05 = 3.47A-.00160 89
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Substituting values into Eq. (I) gives

680 (1 667) (1.333) 12(.91! (3.47_-.00160) (.288+.432)Y2 _ "432)3= • +

0x106x.2 _]

= .00457+2.50£_-.00115

but Y2 = .01 so A = .00263 in., 05 = .00752 radians (7)

Thus the unstretched lack of bolt bottoming is 0.00263 in per flange and the

bolt stretch is 0.0006 in per flange when the flange separation at the gasket

is 0.01 in per flange. The initial bolt tightness develops stresses of 90,000

Ib/in 2 in the bolts. This is the condition at room temperature.

We now consider the state of affairs at 137°R. We have no values of

thermal contraction for the steel bolt material; however, for the purpose of

this example we will consider it to be .0002 less per unit length than for

the flange. Since the flange thickness is 0.2 inch this results in a decrease

in 5 by 0.2 x .0002 = .00004 in. to .00056 - _ = -.00207. We have no value

of thermal contraction for the gasket material used; however, for the purpose

of this example we take it as 0.02 in per inch. The new value of Y2 is

therefore 0.01 x 0.98 = 0.0098 in.

Equation (I) is then (subscript c denotes cold value)

u[F (.432)33 i0.0098 =Io c (1.667)(1.333) 12(.91)30x106x.23 + 05c(.720 (8)

and Equation (2) becomes

(9)

Solving Eqs. (8) and (9) simultaneously, F c = 1573 lb/in, and 05c = .00764

radians. These values are not greatly different from the room temperature

values in gqs. (5) and (7). Since the stiffness of the gasket material is

so much greater at the cold temperature it is not certain that the gasket

could "reseat" with the force Fc = 1573 Ib/in. Assuming the 0-ring has

squashed to a width of 0.15 in., the sealing pressure is 1573/.15 = 10,500 psi.

This may not equal the cold yield strength so sealing would not be good.

Nevertheless if the "seating" is not disturbed during cooling a good seal

might be maintained. This is likely where the pair of flanges use the same

materials.

where

The flange stress is obtained from Eq. (16) of Section 41 as

_r=6(F_4M+Qt/2-BdH/8/(I-Nd) 90

(lO)

44-14



a = radial stress in flange (ib/in. 2)
r

N = number of bolts per unit circumference = I0/3.345_ = 0.95/in.

d = diameter of bolt hole = 0.281 in.

d H = diameter of bolt head = 0.392 in.

Substituting values in Eq. (I0) we find the room temperature stress is

a = 106,000 psi (ii)
r

and the cold temperature stress

a = i00,000 psi (12)
r

These values are high enough to suggest the possibility of some flange

yielding with correspondingly lower stresses and lower flange "spring back".

Increasing the b,_, and t of the flange in proportion would give a propor-

tionate decrease in stress without affecting the available springback; or

if the bolt load were increased to give the same stress in the flange, the

available springback would be proportionately increased. The higher bolt

load in this case would provide greater sealing pressure but would require

an increase in the bolt area.

During the transient temperature condition there will be somewhat more

rapid cooling of the flanges than of either the O-ring or the bolts. It is

possible that the bolt contraction might lag that of the flanges by as much

as 0.001 per unit length or 0.0002 in for its 0.2-in. length. This corresponds

to a decrease in 5 from the -0.00203 to -0.00223 with a corresponding

reduction in load to FcTran.=1440 ib/in. This is only a bit lower than the

cold value but does increase the possibility of leakage.
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44.4 Flat Gasket Between Flat Flanges (not contacting outside the bolt

circle)

Flat Allpax 500 gaskets have been used successfully between flat

flanges for cryogenic temperatures. In Fig. 44.2 is shown such a flange

made of 321 stainless steel and having a flange thickness selected to give

the same flange stress and gasket force as was found in Section 44.3. In

this case, where the flanges do not contact beyond the bolt circle, the

flange thickness is 0.246 i_ rather than the 0.200 in. used in Section 44.3.

Ten I/4-in. steel bolts draw the flanges together. The gasket is initially

I/4-inch wide and 1/16-inch thick. The gasket load is the same 1680 ib/in.

as was found at room temperature in Section 44.3 in Eq. 5.

The bolt and gasket loads are in equilibrium, therefore

1.672B = 1.406F giving B = 1410 ib/in. (13)

The moment M t per unit length of the mid-flange circle (radius a) in Ref. II,

page 179, or Figure 42.2 is given by

aM t : 1410(1.672)(1.672-1.406) : 627 ib in (14)

The corresponding angle through which the flange twists (neglecting the

tube restraint as was done in Section 44.3) is given by Eq. II of Section

42 as

12aM t
0 = (15)

Et31Oge(d/c)

where d = outer flange radius : 2.000 in.

and c : inner flange radius = 1.250 in.

Substituting values into Eq. (15) gives

0 : 0.0357 radians (16)

With this much flange roll, the outside of the flanges will be drawn

together with respect to the gasket by

0(d-1.406) = .0212 in per flange

or .0424 in. for a pair of flanges (17)

This exceeds the initial gasket thickness of 1/16 inch by so little that there

is some possibility that the flanges could come into contact due to initial

set in the gasket material.
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FIG. 44.2 - Flange Which Does Not Contact
Outside Bolt Circle
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From Eq. 13 of Section 42 the maximumflange stress is

6aMt
= 106,000 Ib/in 2 (18)

of t2 c l°ge (d/c)

This is equivalent to the stress obtained in Eq. (Ii)_ as was desired, however,
it should be noted that the stress in Eq. (ii) was in a radial direction and
was maximumat the bolt circle; while the stress in Eq. (18) is in a circum-
ferential direction and is a maximumat the inner radius.

The bolt stress is given by

_B = B/NA

where N = number of bolts per inch = 0.95/in.
A = cross-sectional area of bolt = 0.049 in.

(19)

With Eq. (13) this gives

aB = 1410/(0.95x0.049) = 30,300 ib/in. 2

The bolt stretch is the strain times the length per flange.

about 0.246 in. + 1/32 in. = 0.277 in. per flange

aB

5b =_-(0.277) = 0.000279 in.

The gasket squash, using a modulus of 50,000 ib/in. 2

thickness of 1/32 inch per flange, is

aG 1680

8g = g_(.031) = 0.25x50,000 (0"031) = .00417 in.

(20)

This length is

(21)

from table 5 and a

(22)

In the above we have considered the room temperature condition of

this connector. We would now like to consider it at 137OR. We take the

contraction of the bolt as 0.0002 less per inch than for the fla_gegas was
done in Section 44.3. We take the contraction of the bolt as about the same

per inch as that of the gasket_based on the limited information in Ref. 12,

page 35-19. The primary effect of cooling then is a relative lengthening of

the bolt by 0.0002x0.246 = 0.0000492 in. This must be accommodated by a

combination of flange twisting and bolt contraction and gasket expansion.

From Eqs. (13) and (16) we see that

Z_B/Z_ = 1410/.0357 = 39500 (ib/in.)/radian (23)

for the flange (neglecting the effect of temperature on flange material

modulus). From Eqs. (13), 421) and (22) we see that (neglecting the

effect of temperature on flange material modulus)

94
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ZIF/Z_5 = 1680/.00417 = 403,000 (ib/in.)/in.
g

ZiB/ZI5b = 1410/.000279 = 5,050,000 (ib/in.)/in. (24)

where Z_5b is the increase in bolt length due to an increase in bolt load, _

and Z_Sg is the decrease in gasket height due to an increase in gasket load.
But,

AO/(Z_5 b + .0000492 + Z_Sg) = -1/(1.672-1.406) _-3.76 rad/in.

(25)
Combining (23), (24) and (25) and using ZkB/AF = 1410/1680 = 0.84,

= , = -14.7 x I0-6 in. (26)
Z_5b -0.99 x 10 -6 in. Z_Sg

and

ZkB = -5.0 Ibs., A@ = -126.2 x 10-6 rad (27)

These changes are negligibly small.

As was true in Section 44.3, the transient temperature condition

could result in bolt contraction of 0.001 inch per inch of length less than

that of the flanges. This is five times as much as resulted in the increments

given in Eqs. (26) and (27). As a result the bolt load might drop to

1410-5x5 = 1385 Ib/in. with a corresponding gasket load of 1680 (1385/1410) =

1650 ib/in. This is nearly the same as was there before and indicates little

increase in the possibility of leakage.

95
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44.5 AN Fittings

AN fittings and tubes made of the same materials can be expected to

show very little change in leakage characteristics at uniform low tempera-

tures since the relative contractions should be nearly equal and the changes

in modulus and strength should also be nearly equal.

During the transient conditions accompanying a rapid cool down (as

for a high velocity flow of cryogenic fluid through the connector), there

may be a lag in cooling for the outer portions of the connector. This could

result in a temporary decrease in sealing load; however, since the heat flows

rapidly, it is not likely to have a duration of more than a half minute.

In the case of a hydrogen or helium line which is condensing liquid

air on its outer surface, it is possible that a steady-state condition might

develop where the outer surface is not as cold as the inner. The sealing

load would then be lower. To counterbalance this effect, a nut with greater

coefficient of contraction might be used as compensation.

98
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44.6 Invar Rings

In Ref. 4 a seal using an invar ring between the gasket and the

flanges is described. The seal is claimed by the author tO contain LH 2 at
1800 psi. A drawing is shown in Fig. 44.3. A compressive stress of about

I00 to 300 psi is attained in the gasket at assembly. The seal is pressure

energized at room temperatures. At low temperatures the outer flange shrinks

more rapidly than the invar ring, thus creating extra sealing pressure.

An estimate of the additional pressure can be attained from the

formula

where

Ap = (Eiti/ai)A_ (28)

E. = modulus of the invar
1

t. = thickness of invar (in.)
1

a. = invar ring radius (in.)
i

_e = differential contraction per unit length between ring

and flange

For example in the ring of Ref. 4, t. = 0.235 in. and ai = 2.03 in For
shrinkage _£ of .001 and an assumed _i = 28,000,000 ib/in. 2, Eq. (28)

gives f_p = 3470 I5/in. 2. This is a very substantial increase compared

with the sealing pressures of about 200 psi used in Ref. 4 at room tempera-

ture. For high-pressure service a heavier invar ring might be needed.

9_ 4
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44.7 Discussion

It has been shown in Sections 44.3 and 44.4 that, although there is

a decrease in gasket load with a drop to cryogenic temperatures, it is

relatively moderate in magnitude. For flanges which are thicker and have

longer bolts, it would be proportionately greater. The generally observed

increase in leakage is therefore not only due to a decrease in gasket load

hut also must result from an increase in hardness of the gasket material.

We see from Table 44.3 that there is indeed an order-of-magnitude increase in

modulus. If the gasket requires any reseating as it cools_it is therefore

likely that intimate contact between gasket and flange surfaces would require

gssket forces that are an order of magnitude larger. It is believed that

this need for greatly increased gasket forces with cooling is an important

cause of low temperature leakage.

Various ways have been conceived for increasing gasket forces.

Perhaps the simplest would be to use bolts having a higher rate of shrinkage

with temperature than the flanges. The bolt length could be increased if

necessary to achieve the proper squeeze. It would then be necessary to

design the flanges somewhat heavier so that the increased bolt and gasket

loads at low temperature would not cause failure.

If the bolts in the flanges of Sections 44.3 and 44.4 had been

aluminum of three times the cross-sectional area, they might have shortened

as much as 0.002 more per unit length than the flange material. Using the

same analysis procedure as was used in those Sections, we find an increase

in gasket force from 1680 to 1950 Ib/in. for Section 44.3 and from 1680 to

1740 Ib/in. in Section 44.4. These might help somewhat on sealing, however,

more effective designs seem to be indicated. It should be pointed out that

with stiffer flanges these load increases could be substantially more.

"Elastic springback" in a connector tends to reduce the effects of

relative expansion in changing the gasket load. The "elastic springback"

is larger as the elastic energy stored in the flange increases. Thus for a

g_ven gasket load, increasing the bulk of flange material and the stress level

increases the springback. This is not necessarily a desirable design ob-

jectiv_since to avoid low-temperature leakage it may be desirable to increase

the gasket load substantially.

An invar ring, with the gasket sandwiched between it and the flange,

appears to be a promising method for increasing gasket loads during cooling.

For the case considered, the increase in sealing pressure was about an order

of magnitude. For higher-pressure service and harder gasket materials, the

increase would be smaller but still substantial.
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44.8 Appendix A: Check on Neglect of Flange Rolling

In connection with Eq. (2) it has been tacitly assumed that flange

rolling of the type conventionally present in ASME-type flanges is so small

that the effect on the load is negligible. To check on this we refer to

Eq. ii, Section 42. The moment accompanying flange twisting is

M t = (:,5Et 3 logedl/(12a ) (A-l)

where d = outer flange radius = 2.000 in.

c = inner flange radius = 1.078 in.

a = mean flange radius = 1.539 in.

Substituting values from Eqs. (Ii) and (7) into Eq. (A-l) gives

M t = 64(Ibrin.)/in. (A-2)

For comparison the moment of the bolt force B about the flange contact

point is

M b = B(bmax) = 4200(+0.288) --1210(Ib.in.)/in. (A-3)

The moment M t from flange twisting is about one twentieth of that due to bolt

load, so neglecting it is justif]i_e._
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44.9 Appendix B: Check on Neglect of Pipe Restraint

small.

see there that

M = 18D06; Q = lS2d86

where h = tube wall thickness taken as 0.031"

4

_=/3 (I - v2) -1

c2h 2 = 7.32 in.

Eh 3
D = = 81.8 lb.-in.

12(1 - V2)

In obtaining Eq. (5) it has been assumed that M and Q are negligibly

As a check on this we refer to Eq. (h), page 181 of Ref. ii. We

(_-i)

Using the value of 85 given in Eq. (7) we have with Eq. (4)

M = 14(Ib.-in.)/fn. (B-2)

and

Q = I00 lb./in. (B-3)

It is apparent that Mfs negligible in comparison with the moment of 1210

(ib/in.)/in. due to gasket force, Eq. (A-3). The moment due to Q is

Qt = I0 (Ib.in.)/fn. (B-4)
2

It is apparent that this is also negligible.

1.01
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45. EFFECT OF CREEP ON FLANGE CONNECTORS

by

B. T. Fang

45.0 Summary

Creep of the components in a fluid connector will cause the undesirable

relaxation of gasket compression. In this section, previous work on this

subject is briefly reviewed first. A more general theory is then formulated

together with a suggested method of solution using high-speed digital computers.

A simple numerical example is given without taking into consideration the

creep bending of the flanges.

It appears that the weakest link in the analysis of the creep problem

is the lack of material creep data. In addition the creep of materials is

very sensitive to the temperature at elevated temperatures. Therefore

temperatures of the components of a connector have to be determined in order

to predict their creep behavior accurately. Because of these uncertainties_it

seems desirable to make an order-of-magnitude study of the equations formulated

in this section and make some drastic simplifications. The contribution of

the bolts to relaxation of flanged connectors should always be considered.

Some other members of the connector may be neglecte_depending on their geo-

metrical and material properties. Some criteria are given for assessing

the relative importance of the components of the connector.
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45oL Introduction

Creep is the slow deformation of solid materials over extended

periods under load. It is usually more pronounced at elevated temperature

and under high stress. Fig. 45.1 shows a typical creep strain-time relation

as obtained in a constant-load tensile test at a given temperature.

Creep

Strain

Primary Secondary -- /" a

-4_ Creep ___ Cree_ ___ T_%t_pry

time

FIG. 45ol A Typical Creep Curve

Intimately related to creep is the slow relaxation of stress in a body under

strain. In a flange connector the relaxation in gasket compression may lead

to leakage. This was among the earliest problems studied on creep. As

representative investigations on the subject we may refer to the work of

Baumann (Ref. I), Waters (Ref. 2) and Marin (Ref. 3). Baumenn's result is

presented in a very attractive simple form. One of the major conclusions is

that it is desirable to have the other members of the flange assembly very

flexible in comparison with the bolts. This has led to the use of bolt

collars to reduce the relaxation of bolt stress. Unfortunately Baumann's

result is not applicable when the bolts, flanges and gasket obey different

creep laws and when rolling of the flange is included. The former does not

add much to the complexity of the problem but the latter presents considerable

difficulty because of the continuous redistribution of stresses in the flange

during creep. For "long time" creep behavior the stress redistribution

is complete, the problem again becomes simpler and solutions are available

(Refs. 3,4). The transient period of stress redistribution has been neglected

by most investigators on account of its difficulty. A notable exception is

the work of Waters (Ref. 2). It is believed that the transient behavior is

important because

Io The time duration of interest is much shorter for launch vehicles

than for steam power plants, with which most previous investi-

gators are concerned.

. Weight consideration calls for less conservative designs for
connectors used on launch vehicles. The higher stresses in-

volved cause severe creep.

. Knowledge of the transient behavior would furnish us an optimum

time for the retightening of the connector.

1

45-2



In Waters' paper the transient behavior of the creep of bolts and the rolling
of flanges is treated. Even though many important factors are not considered,
still the governing equations becomevery muchcomplicated and solution of
these equations is quite beyond the computing facilities available at that time.

In all these works mentioned, the primary creep (see Fig. 45.1) is

not considered and particular forms are chosen for the creep law governing

the secondary creep of flange connectors. An exception is the work of Popov

(Ref. 5 ). But again only axial creep of the bolts and flanges are included.
I

In the following sections we shall make a general study of the

creep of flange connectors. Very general forms of flange loading, flange

cross-section, and creep laws shall be considered. We shall formulate the

problem in a form which is conceptually clear, easy for generalizations, and

best suited for machine calculations.
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45,2 Nomenclature

A

B

C

D

Total cross-sectional area

Inside diameter of flange

Bolt circle diameter E_o3

Bending rigidity, = 12(1_ 2)

E

e

F

FD

Young's modulus

Elastic strain

Creep strain

Total force per unit length of pipe circumferenc_

aA

2_r
o

B2p

8r
o

FR

FT

PBx

2r
o

p.(G2-B 2)

8r
o

G

go

Gasket circle diameter

Pipe thickness

h G

L

M
o

M t

M
Y

P

Qo

r
c

r
o

C-G

2

Length

Pipe reaction moment,per unit length of pipe circumference

Twisting moment, per unit length of pipe circumference

Bending moment about y-y axis

Internal pressure

Pipe reaction shear force, per unit length of pipe
circumference

Distance from flange axis to centrold of flange cross

Pipe radius .... _ __
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r T

W
o

x_ z 3

Y

0

0

T

Subscripts

B

F

G

K

c

Superscript

G 2 + GB + B2

3(G + B)

radial deflection at junction of pipe and flange

axial distances (Fig. 45.2)

radial distance from centroid

stress

rotation of flange (Fig. 45.2)

Poisson's ratio

Temperature

Bolt

Flange

Gasket

Collar

Centroid

Derivative with respect to time
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45.3 Creep Law

Our present knowledge of the physical process does not allow us to

formulate a satisfactory creep law from the structure-of-matter point of

view. Instead we have to rely upon phenomenologlcal laws derived from test

results. The majority of the creep tests performedhave been carried out in

tensile creep test machines under constant load and at a given temperature.

A typical test curve is shown in Fig. 45.1. Immediately after the application

of load, in primary creep, the creep strain increases very fast. Gradually

the creep slows down until finally the creep rate remains practically con-

stant (secondary creep). Finally, in the tertiary period, the creep rate

increases sharply until fracture occurs. At high temperatures and high

stresses creep proceeds faster. In particular the primary creep often ex-

tends over a large time interval and cannot be overlooked.

Many different creep laws have been suggested on the basis of test

results (Ref. 6,7,8). The effort is hampered by the meagerness of test

results, and hecaus_ most of these tests have been constant-stress tests.

For our purpose it is immaterial which creep law is used as long as we have

the information about the creep rate at each, instant under consideration.

Since it is not possible to have tests which duplicate every stress-strain-

time history, generally we shall not have this information. To get around

this difficulty we shall neglect the possible history dependence of creep

rate and adopt the postulate for the existence of a functional relationship

(o, c, a, T). : 0 (i)

among the stress ¢, creep strain ¢, creep strain rate _ and temperature T.

This is the so called "_train hardening" theory of creep (Ref. 8). With this

postulate the constant-stress, constant temperature test results would give

us the functional form of '_', or, the creep rate is known when the stress,

creep strain and temperature is given. It is by no means to say that Eq. (i)

is the correct general creep law. Specifically this does not include the

well-known creep recovery effect. It is believed to be the most reasonable

postulate to extend the applicability of the present available test results.

Conceivably with the accumulation of more experimental data we may very well

revise this postulate. The method we are going to describe shall be very

general so that it will be adaptable to these changes.

Most of the time we shall deal with constant-temperature conditions

and Eq. (1) can be written in the alternate form

= f(a, e) (2)

For secondary creep the creep rate is almost independent of creep strain and

we have

a : ._(o)

(3)
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45.4 Formulation of Equations

A flange connector assembly consists of the gasket, bolt and

collars, flanges and the adjoining pipes. The behavior of the gasket, bolts

and collars are comparatively simple because they can be treated approxi-

mately as members under uniform axial tension or compression. The adjoining

pipes interact with the flanges. The loads transmitted from the flanges to

the pipes are essentially axi-sy_metric. Solutions are available for their

behavior if creep bending of the pipes is neglected (Ref. 9). The difficulty

of analyzing the creep behavior of a flange connector lies in the flanges.

Since creep under uni-axial stress condition is much simpler than under multi-

axial stress condition we shall use the simplified approach of treating the

flange as the small twisting of a ring under uniformly distributed couples.

This approach in the elastic analysis of flanges was initiated by Timoshenko

(Ref. 4) and elaborated recently by Dudley (Ref. i0). An additional simpli,

fication shall be made that the dimensions of the flange cross section is

small compared with the radius of the pipe. The consequence is that the

deformation of the flange can be approximately represented as the sum of a

"hoop extension" of the centroid of the flange cross section and a uniform

twist of the flange cross:section about the centroid.

Fig+ 45,2 is a cross sectional view of a typical flange and the

adjoining pipe. Nomenclature used shall follow that of Ref. I0 whenever

possible.

o Q
....
--, , _" -_.t_ol_I_-4_

=

center of pipe and flange

FIGURE 45.2

Cross Section of a Typical Flange, Showing Forces and +Moments

The forces on the flange are bolt load FB, gasket compression FG, internal

pressure loads FT, FD, FR and the pipe reaction M ° and Qo" All these loads

are taken per circumferential length at the pipe radius r . Notice that the

pressure loads FT, FD and FR do not change with the creep°of the flange
connector.
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Equilibrium in the axial direction gives us

FG = FB-FT-FD

or, in terms of stresses

2_r o

0G = A_ °B- -_G (FT+FD)
(4)

In creep problems we shall most often make use of the "time-rate" equations.

Differentiating Eq. (4) with respect to time, we obtain

%
0 =-- 0B
G AG

(5)

The resultant moment of the forces about the centroid C is

(6)

The moment M o and shear Qo due to the pipe reaction are related to the rota-

tion of the flange and the radial deflection at the junction of pipe and

flange W o by (Ref. 9)

e - _ (2_M -Q_) (7)

2pZD o o

w = --!-1(-PMo+Qo) (8)
o 283D

where 4__/3(i_ 2)"

_ogo

The radial deflection is the result of the flange rotation and hoop extension,

i.e.

W ° = zO+(ec+ ec-e p- %) rc (9)

where e c and e c are elastic and creep hoop strains of the flange and e and
e_ are elastic and creep hoop strains of the pipe. Solving for 14o and p Qo

f_om Eqs. (6), (7), and (8) we obtain

(io)
(ec+ec- eP- _P)IQo = 2_2 @ (l+2z_)+2_rc

Mo= 2_D_(l+zS)+_rc(ec+Cc-ep-_p) _
(II)



The elastic hoop strains are related to the hoop stress by Hooke's law, i.e.

o
c

e ---

c E F

(12)

(FR-Q O)

EL r (12a)
OC

and

e =--_= PB

p Ep 2Epg o

(13)

From Eqs. (i0) and (12a) we obtain the following relation:

rotation e and the hoop stress O_
C

between the

e = l+2z_ c EF +2_ Dror c _2D 2_rc(C c-ep'EP)

(14)

Alternatively the angle of rotation e can be related to the stresses and

strains in the flange. On account of rotational symmetry, the flange cross

section will remain in its diametral plane during deformation. Therefore

the strain at any point can be written as the sum of a "twisting" part and

a '_oop extension" part, or

(15)
= -- 0 + (e + cc)(eF + EF) r c

C

Using Hooke's law, we can rewrite Eq. (15) as

r[ ]c i

0 = -_ _-F (°F-°C) + (¢F-CC)
(16)
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Notice that the angle of rotation 8, and therefore the left-hand aide of

Eq. (15), is independent of the location at which oF and e_ are evaluated.

From Eqa. (14) and (16) we obtain the following relation between OF and Oc.

'o = d ,!i"."_c_ | _" _" + 213r - EFeF+EFe c l+2zS(2[_rc
F c [_ l+2z[_[2[_2Drorc

E F _/r c EF _/r c FR

i+2z8 (2_rc) (ep+ %)+ i+2z8 2_2D

(17)

or

= _ -- + 2_r c% c

-E CF+EF¢ c [ 1

z t _/r
+ l+2z_C(28rc %)

_/rc }l+2z_, (2_rc)
(18)

The resultant moment of the stresses in the flange cross section

about the y axis is

-x+z Y--'Y(0

(19)

which should balance the external moment. It can be easily shown from

equilibrium that

M t =-/ = _-r % _dyd

o o. =y(_)

(20)

Differentiating Eq. (6) with respect to time and making use of Eqs. (i0), (12),

(14) and (20) we obtain
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z

6F _dyd _ _B

2_2Dr r
o c • •

+ 1+2z__%'_p)

C

%2_ 2_

+
2_2Dr°rc 1

(l+_z_))+ _. (21)

Eqs. (5), (18) and (21) are three equations for the four unknown stress

rates; _B' _G, _c and 0,F. Another equation involving these unknowns

can be obtained from the compatibility condition that the length of the

bolt is equal to the length of the compressed flange assembly at all times,

i.e.,

LB (I+eB+_B)' =. LK( I+eK)+L c (l+ec+_G) +2_, 2hGO (22)

We shall assume the thickness of the flange LF remains unchanged. Dif-

ferentiating with respect to time, and making use of Hooke's law and

Eq. (14), we obtain

% , LK _ + LG

'<--7+<,,: +r%L + _G]"]

Equation (23) .introduces one more unknown, the rate of change of stress in

the collars, _K" But we have one additional condition that the bolt loads

are transmitted through the collars, i.e.

.%
°K:_ % 11:_

AB 0B (24)

or OK:_ 45-_1



Equations (5), (18), (21), (23) and (24) are the five basic equations for

the five rates of change of stresses, %' °G' t_, '°C and °F" In

addition we have the following auxiliary equations for the determination of

the strain rates:

eB= fB ( °B, EB)

_F= fF ( oF, eF)

ec = fF ( °c' _c)

6G= fG ( _G' _G)

eK = fK ( _K' _K)

(25)

and the equations

(26)

for obtaining the stresses and strains from the stress and strain rates.
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45°5 Method of Solution

In general the system of equations formulated in the preceding

section has to be solved using step-by-step integration starting from zero

time. Even so the integration is still difficult because we do not know

the distribution of the stress rate _F in the flange cross section. Should

we know the distribution at any instant_we would be able to carry out the

double integration in Eq. (21). Then we would be able to eliminate four

unknown stress rates and obtain a single equation relating one of the stress

rates to the known stresses, creep strains, and creep strain rates. From the

now known stress rate we could determine the stresses, strains and strain

rates at an immediate future time and the step-by-step integration could be

carried out smoothly. This difficulty of not knowing the stress distribution

in the flange was encountered in the early investigation by Waters (Ref. 2).

Waters suggested a sfmple approximate method by replacing the actual stress

distribution in the flange during creep by a trapezoidal distribution. It

is believed that this is not an unreasonable assumption when evaluating the

bending moment in Eq. (19). The trapezoidal assumption, howeve_ violates

the requirement that the right-hand side of Eq. (16) should be invarlant

with respect to _. Waters' scheme would enforce the satisfaction of Eq.(16)

only at the extreme fibres of the flange cross section. The validity of

this procedure seems to be rather questionable. In particular, Waters'

method predicts a vanishing rate of change of bending moment at the beginning

_q. 18, Ref. 2), which does not seem to be reasonable at all. A more

reasonable method would be to require that Eq. (16) be satisfied approximately

at several points in the flange cross section. But then the simplicity of

Waters' method may become lost. We shall not go into this further, but shall

describe a method of solution based on step-by-step integration with iteration

at each step. The detailed procedure for use on a hlgh-speed digital com-

puter is outlined as follows:

. Find the elastic solution, i.evthe stresses and strains at
zero time. This involves the simultaneous solution of

Eqs. (4), (6), (I0), (ii), (12), (13), (17), (20), and (22)

with the creep strains equal to zero. The solution can be

found easily without ose of the computer.

. Store in the memory the functional form of the creep laws

= f (_, _ ) for the gasket, bolts, collars, flange, and

pipe, either

a. formulate s_broutines for the assumed analytical

expression _ = f (_,e), or

b, store in the computer memory tabulated data of
e = f(o,6) obtained from _st%. If each

dependent variable takes on 20 different values,

the dependent variable E will occupy 20x20=400

memory spaces. We shall also need to devise an

interpolation formula to find the functional

relation _ = f (o,e) at intermediate points.



. Step-by-step integration from zero time and iteration at each

step.

a. Proceed from zero time, at each time step, assume a rate

of change of bolt stress _B. Substitute in Eq. (23) and

find _C. Then Eq. (18) gives us the variation of 6 in the

flange cross section. Substitute OC and 5_ thus found in
•

Eq. (21) and solve for =B_ If the calculated _B agrees with

the _B assumed, we have the correct solution. In general

they will not agree. Then assume a new rate of change of

bolt stress _B which is related in some way to the previously

assumed _B and previously calculated °B" Repeat the process

until finally the calculated _B and assumed _B converge.

Do From the physics of creep we should expect the rate of

change of bolt stress _B to be large at first. Therefore

the time step at the beginning should be small•

c. Initial iteration may take longer, since we have no idea

about the order of magnitude of _B at the very beginning.
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45.6 A Numerical Example

The previous sections show that the difficulty with the creep

problem lies in the bending of flanges. As a result, a high-speed computer
has to be resorted to for its solution. As a relatively _Implenumerical

example which can be solved by hand calculations we shall consider flanges

as rigid and shall concern ourselves only with the creep of the bolts and

the gasket. This will illustrate the effect of primary creep on stress

relaxation which has been neglected by most investigators.

Let us consider the bolts used in the connector have effective

length of LB = 8 in. and are initially tightened to 40,000 psi. The gasket
has 1/8 in. thickness and has four times the cross-sectional area of the

bolts. The bolts are made of alloy steel obeying the following empirical

creep law:

e = 10-5(atm+bt) (27)
B

where t is time in hours

a,b, m are parameters having the values given in the following table:

Stress, psi a

40.840,000

25,000 ! 14.1
15,000 5.2

7,500 I

b

0.15

0.ii

0.03

0.01

m

0.38

0.33

0.33

0.33

The gasket is made of copper obeying the following creep law (Ref. 5)

_ Ga 5.68x10_5t0.21sinh oG10xl0"8t
sin 4h_ + _

0<__t ___1400 hours _ and

6.10x10-8t sin_50+ 2.6xl0-4sinh OG600--- 
h

t ? 1400 hours.

J
The relaxation of gasket compression due to creep can be found

from the equilibrium equation

(28)

°GAG = _BAB
45- 15
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and the modified form of the compability equation (221

_B 2L_+L G (I + aG
LB(I+ q + _B)- _ + _u)

(30)

where LF is the thickness of the rigid flange.

vanishes. Eq. (30) becomes

LB(I qC_B = 2LF+LG(I +

Initially the creep strain

(31)

where 0_and ooG are the initial stresses in the bolts and the gasket.

Therefore Eq.(30) can be written as

[_ ] °8°e_G B EB G
(32)

Substituting in the dimensions and material properties of the bolts and

gaskets_we obtain the following equations for Eqs. (29) and (32):

OB = 4 °G
(29a)

64 B ...... CG
7.5x106 14. ixl06

(32a)

Notice that in this particular example_because the bolts are long compared

with the gasket thickness_while Young's modulus of bolt and gasket material

are comparable, the elastic strain of the gasket is negligible. Therefore

Eq. (32a) becomes approximately

64 B 6[ ffi eG (32b)
7. 5x10 J

where o_ ffiI0,000 psi is the initial stress in the gasket. Eqs. (27),(28),

(29a) and (32b) can be solved using step-by-step integration starting from

zero time. The result of the gasket stress relaxation with time is presented

in the following table.

118
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Gasket Stress_ psi Time_ hours

i0,000 0

8,350 1

8,000 2

7,500 i0

6,800 i00

4,000 I000

During the first ten hours most of the stress relaxation occurs because of

primary creep. It is somewhat unfortunate that because of the unavailability

of gasket creep data, Eq. (28) for the creep of the copper gasket is chosen

more or less arbitrarily. As a result, the creep resistance of the bolts

and the gasket are comparable. Because the bolt length is much greater than

the gasket thickness, the relaxation of gasket compression is almost entirely

the result of the creep of bolts.

119

45-17



45. 7 Dis=ussion

In the preceding Sections a general formulation of the creep of a

flanged connector is presented. The creep laws of the components are assumed

to be known. As a rule, however, only very limited material creep data are

available_and they were obtained under constant-load and constant-temperature
conditions. In addition the creep properties of materials are very sensitive

to the temperature at elevated temperatures. Therefore, temperatures of the

components of a connector have to be determined in order to predict the creep

behavior accurately. Because of these uncertainties, it appears that often-

times it is superfluous to solve the complicated complete equations using in-

adequate creep data while just as plausible results can be obtained based on

simplified models. Some of the possible simplifications are as follows:

i. If the connector is designed for long-time service, the pri-

mary creep can be neglected. This underestimates the stress

relaxation, particularly in the beginnin_ but becomes more

accurate as time goes on. The large error in the beginning

does not matte_since if there is still sufficient gasket com-

pression at the end of the designed life, there would cer-

tainly be enough compression at the beginning.

. As shown by our previous numerical example, because of the

small thickness and lower stress of the gasket, the gasket

can be neglected in calculating the relaxation of the con-

nector if the creep and elastic properties of the gasket do

not differ very much from those of the bolts.

. In flange connectors with contacting outside the bolt circle,

bending of the flange can be neglected. Since the bolt load

is carried by a much larger area of the flange, the stresses

in the flanges are much lower than those in the bolts. If the

material of the flanges has comparable elastic and creep prop-

erties to those of the bolts, the contribution of the flange

to the stress relaxation of the connector can be neglected.

o For flanges contacting inside the bolt circle,bending of

the flange is of importance. The flange contributes to both

creep deflection and elastic recovery. It is known (Ref. II)

that for some cases the elastic recovery may even be more than

the creep deflection so that the flange deformation actually_

retards the stress relaxation. Since bending of the flange

is a somewhat different mechanism from the tension and com-

pression of bolts and other members of the connector, it is

not obvious how its contribution to stress relaxation compares

with that of the bolts. An estimate of their relative im-

portance can be made by the following method. Assume that

the bolts and flange obey creep laws of the following form:



e = KS t (33)n

A modified form of the compatibility equation (22) can be written as:

L _r ° _B_i + KBt AB + 2hG(0 - 0o_ = 0 (3.4)

The additional rotation of the flange O-0 for a simple ring flange is given

by Eq.(ll) of Ref. 3. Therefore, Eq. (34 °) becomes

VWB- WB {WB) nB] IWBhG(2)_ + I/nFXI - i/nF)(2 + i/nF) ] nF

LB L "EBAB + KBt _ B + 2hGKF_ L ((d)(1- 1/r0(c) (1 -1/n))(h)(2 + 1/nj = 0

(35)

where
LB =

wB =
W B =

EB =

A B =

KF,nF=
hG
t =

d =

C =

h =

bolt length

initial total bolt load

total bolt load

Young's modulus of bolt

total bolt area

constants in the creep law for bolts, see Eq. (33)

constants in the crrep law for flanges, see Eq. (33)

distance from gasket radius to bolt radius

time

outside radius of flange

inside radius of flange

flange thickness

If the last_rm in the above equation is smaller than either of the first two

terms then the contribution of the flange to stress relaxation is negligible.

For hubbed flanges the last term should even be smaller.

In conclusion we may state that for very critical applications the

complete equations formulated in the preceeding sections shhll be solved to

determine the relaxation of a flanged connector with time. In most other

cases the complete equations can be simplified. The contribution of bolt re-

laxation should always be considered. But some other members of the connector

may be neglected. A judgement based on the knowledge of the geometrical and

material properties is needed. For members subjected to simple tension and com-

pression, the judgement is comparatively easy. However, care should be ex_

cised that it is not only the creep but also the elastic recovery that controls

the relaxation of a connector. The relative importance of the bending of

flanges is more difficult to judge. Eq. (35) furnishes us a means to deter-

mine whether flange bending is of importance to the relaxation of a fluid

connector°
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46. BOLT FORCE TO FLATTEN WARPED FLANGES

hy

S. Levy

46.0 Summary

Initial lack of flatness of the flanges of pipe connectors can result

in leakage if the bolt loads are not sufficient to achieve positive gasket

compression at all points on the circumference. Equations are presented for

computing the magnitude of the bolt load necessary to flatten the flange.

Account is taken of the bending and twisting resistance of the flange itself,

the restraint afforded by the pipe, and the fact that the bolt circle is

displaced from the gasket circle. The analysis applies to flanges whose

warping can be adequately described by considering it to vary as cos 2@.

Numerical examples are considered for several typical flanges.
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46.1 Nomenclature

A,B

C

E

F B

F G

Fp
G

I 1, 12

GJ

integration constants

centroid of flange cross section

Young's Modulus (1b/in 2)

bolt load (Ib/in.)

gasket force (Ib/in.)

pipe force (ib/in.)

shear modulus (Ib/in. 2)

principal moments of inertia of flange cross section (in 4)

_orsional stiffness

M_, MR, M_ moments (Ib/in) (Fig. 46.2)

Nz, Nz8 ,N@

RG

R

t

T

w

z

7z0

Br, _@

c
z

@

v

forces in pipe walls (Ib/in)(Fig. 46.3)

radius of bolt circle (in.)

radius of gasket circle "(in.)

radius at flexural center T (Fig. 46. i) (in.)

radius of mid-thickness of pipe (in.)

pipe wall thickness (in.)

flexural center of flange cross-sectlon

warping displacement (in.)

axial coordinate along pipe (in.)

angular coordinate (Fig. 46.2)

parameter (Eq. 221 (I/in.)

angle between _ and I axes (Fig. 46. I)

shear strain in pipe wall

radial and circumferential displacements (in.)

coordinates (Fig. 46.2)

axial strain in pipe wall

angular coordinate (Fig. 46.2)

axial load function (ib/in.)

Poisson's ratio, taken as 0.25.

12-1

46-2



46.2 Introduction

Many aspects of the rational design of flanged joints are considered

in the ASME's Pressure Vessels and Pipin_ Design Collected Papers 1927-1959.

This work is all based on the assumption of circular symmetry. It provides

formulas for stress and deformation for the many loading conditions where

circular symmetry is present. Experience shows, however, that the contact

surfaces of flanges may deviate froma plane either due to machining tolerances

or due to distortions in service. Dudley (Ref. i) considered the bolt loads

necessary to overcome this warping and attain a flat contact surface on the

assumption that the flange and pipe wall could be considered developed into

a flat surface. Waters (Ref. 2) in discussing Dudley's paper, and Dudley

in replying, indicated that when twisting due to three-dimensional loads is

considered, the Dudley analysis somewhat overestimates the bolt stress required

for flattening. This section takes better account of the three-dimensional

nature of the problem and does, in fact, show substantially lower bolt

stresses than would be predicted from Dudley's analysis. It does, however,

make use of some substantial simplifying assumptions. They are: (i) that

the flange is sturdy and does not change cross-sectional shape; and (2) that

the resistance of the pipe to bending into an oval shape is all due to hoop

bending.

The equations are based on elastic theory and do not consider possible

yielding. It is assumed that the pipe length is long enough to prevent

deformations at one flange from affecting the flange at the other end of the

pipe. (The solution shows that a pipe more than several diameters long

should achieve this.)

The analysis considers only the case where warping varies as cos 20

whereas the actual warping would ordinarily have higher frequency components.

The higher-frequency terms can be computed from Dudley's solution with good

accuracy.
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46.3 Strain Energy in Flange

Fig. 46.1 is a cross-sectional view of a typical flange and shell.

The increment in forces acting on the flange and hub to counteract warping

are the bolt force FB, the gasket force FG, and the force Fp between hub and
pipe. All these forces are taken per circumferential inch. The forces are

all considered to vary as cos 2@ circumferentially, giving

FB ffiFB Max cos 29

FG = FG Max cos 29 (I)

Fp = Fp Max cos 29

These forces cause the flange to twist about its axis, _ in Fig. 46.2 and to

ben_ out of its plane about the _ axis and in its plane about the _ axis.

Considering a cross-section at D, Fig. 46.2, and taking coordinate

axes as shown, the increments in the moment about D due to a force FB are:

dM_ ffi-FB_sin (0-Cz)d(_

dM_ = 0 "(2)

dM B -- FBR B[R T - RL, cos (0 - dz)]d_

Similar equations apply for FG and FD. We can show by integration and

symmetry that

M =0

Ilk = (1/6) B Max (3)
_ .

' :/1
" FG Max RG I RG Max _ sin 25

Since _ and _ are not the principall bending axes of the cross-section the

moments must be resolved along these axes in determining deformations.

The component M B is of course zero. The component of M E along principal

axis i, Fig. 46._ is M e cos 7 while that along principal axis 2 is M_ sin 7.

The strain energy stored in the flange is

2 (cos 2 7. sin2 7 _dCz (4)

U = + + 2G j3

126
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FIG. 46.2
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The first term is the contribution due to bending about the I axis, Fig. 46.1.

The second term is that due to bending about the 2 axis. The third term is

the energy stored due to twisting about point T, Fig. 46.1. Substituting

(3) into (4), integrating, and taking the partial derivatives with respect

to the generalized forces gives

WB Max - _OF B = 9E| 7 + B

RT [" 3/4RB - 3RT_ 2

. Fp MLx ,R2(4_ 3RTI(4_ R 3_)I (Sa)

WG Max - _RGOF G Max

= RT/c°_27 + sin271[_
FB

9E _ I I 12 JL Max R_RG + FG Max R3 + Fp Max RGR21

L-_2MaX/4RG-P_C-3RT_I--I_I4R ---_P'_li "RG + FG Max RG 1 (Sb)'RG'

Wp Max - _ROFp Max = 9E / I1 + I----_

RT R
+ _ - FB Max

+ FG Max RGR[ _ +:Fp

FB Mas _R + FG Max R2R + Fp MaxhR 3]

Max

where

cos 2@
WB = WB Max

cos 20
WG = WG Max

cos 20wp = Wp Max (6)

The positive directions of the flange warping deflections is in the same

sense as the corresponding forces in Fig. 46.1.
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46.4 Stress and Deformation of Pipe

Fig. 46.3 is an element of the wall of the pipe. We take z as axial

coordinate, positive away from the flange, 0 as angular coordinate, and R

as radius to mid-thickness of wall. N, with suitable subscript, denotes the

load per unit length. Equilibrium in the z- and 0- directions gives,

_Nz0 _N z

+ "_z = 0 (7a)

_N0 _Nz0

R--_ + z-_---- = 0 (7b)

At z = 0 we know from Eq (I) that Nz, which equals F , varies as cos 20.• p
We will see if all equations can be satisfied by taking

N ffi_(z) cos 20 (8)
z

where _ is a function of z only• Substituting Eq. (8) into Eq. (7a) and

integrating, with the integration constant zero since there is no net torque

on the pipe, gives

-R d_ sin 20 (9)
Nz0 ffi2 dz

Substituting Eq. (9) into Eq. (7b) and integrating with the integration con-

stantzero, since internal pressure is considered separately,

R2 d2_
= cos 20 (i0)

N9 4 dz 2

We next consider an elemental ring from the pipe formed by cutting

out a length Az. This ring will have acting on it a differential shear

/3q ffi z_-_'--'Az = - dz 2

The ring will distort to an elliptical shape as a result of this differential

shear. The resulting displacements are

50 = 50 Max sin 20

5r = -50 Max cos 20

(12)

The work done by the shear in distorting the ring is

= _qBoRdO = " "%- 0 Ma_
o3

(13)
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FIG. 46.3 Element of pipe wall showing
membrane forces
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This must equal the energy stored in hoop bending of the ring

I Et3_z Rd0 = 2_ Et 3 2 _z (14)

Z_W =_ 112(1 _V2_l 50 Max
o

(In obtaining Eq. 14 it has been assumed that the variation of Br axially

is much more gradual than it is circumferentially so that the energy stored

as a result of axial curvature and twisting of the pipe wall can be omitted.)

Equating the values of Z_W in Eqs. (13) and (14) gives

_0_x - _ i __3]_z_ (i_)

The shear strain in the wall is given by

Nz0 _eo
G-T-= _zO = -_ + R--_ (16)

where w is the out-of-plane distortion, Fig. 46.4.

Substitdtlng from Eqs. (9), (12) and (15) into (16) and integrating

gives

where the integration constant, which corresponds to axial displacements of

the entire cross-section, is omitted.

The axial strain is given by

N - V N@ 8w
z = e = (18)

Et z

Substituting Eqs. (8), (I0) and (17) into (18) and setting

2
R6 d4_ 3.20R 2 d___+ 5.70_ = 0
2

t dz 4 dz 2

:V = 0.25 gives,

(19)

The corresponding auxiliary equation is

R6# 20__t(R3m2) + 5.70 = 0
t2 3. R% t

Solving, m --_+l.265(t/R 2) _I _+VI-2.225R2/t 2

=_ -+I.265 (t/R) -2. 225R2/t 2

= c+i-+V_)(1091_

(20)

(21)
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where the approximation is excellent for the usual case where R is much

larger than t. If we require _ to remain finite for large values of z

we need consider only the roots having a negative real part. The solution

of Eq. (19) is therefore

-Bz
= e (A cos _z + B sin Bz)

= 1.09 l_t'_where

(22)

and A and B are arbitrary constants satisfying conditions at the flange.

gives

Substituting Eq. (22) into Eq. (15) and the result into Eq. (12)

_Sr(Z=0) = -0. lEt2] cos 20 (23)

It can be shown that the hoop bending stiffness of the flange is usually

so much greater than that of the pipe that 5r(Z" ='0)'is very small and B
is negligible compared with A. With this Eq. (22) becomes

= Ae -Bz cos Bz (24)

Substituting Eq. (24) into Eq. (17) with V = 0.25 gives

Wp = w(z = 0) = -0.681-_t (1+ 0.67(_t R) cos 20

Substituting Eq. (24) into (8) gives

(25)

Fp = Nz(Z = O) = A cos 2@ (26)

Since the displacement of the pipe and flange are the same at their junction

and the forces are in equilibrium, Fig. 46.1, we see from Eqs. (I), (6),

(25) and (26)

Wp Max = -.681_ (i + 0.670R/t)Fp Max/E (27)
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46.5 Interaction of Pipe and Flange

A sufficient additional bolt force is applied to correct the initial

warping deflection at the gasket. When this is done the flange will be

flat at the gasket location and the gasket force will have no variable

component,

FG = 0 (28)

The magnitude of the pipe force will be such that the deflections

given by (5c) and (27) are equal. Equating these and using (28)gives

Fp Max

FB Max
6.1__2 67__@ R2/C°S2 ' + sin2 ' / + E

(1 + 0. _ it 12 / _-'_(4R- 3RT)2(29)
RR T

" Substituting Eq. (28) into (5b) gives the correction of warping

displacement as a function of bolt force

WG Max

FB Max

(30)

For a given corrective warping displacement w G _ , Eqs. (29) and

(30) can be used to determine Fp Max and FB Max. Eqs. (_Xthen give: the

corresponding maximum bending and twisting moments in the flange.
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46.6 Example s

The use of the equations will be clarified by several examples.

(a) A flange requires a warping displacement w G iHax = -0.020 in/2 =
-0.010 in. £o achieve flatness, Values of the dimensional constants for

the flange:and pipe are

= 21 in.

RG = 19.5 in.

t = 1.00 in.

E = 30,000,000 Ib/in_

RT = 19.0 in.

R = 17.84 in.

E/G = 2.5

J = 88 in.4

(cos 2 T/I I + sin 2 T/I 2) = 11(52 in.4)

Using Eq. (29)

(Fp Max /FB Max ) = 1.381

Using Eq. (30)

(weMax /FB ) = -2.3 x 10-61n.211b

With the given value of w G Max and E

and FB Max = +4400 Ib/in

Fp Max = + 6000 Ib/in

This is about one-third the value given in Ref. I for a similar problem.

In this example the pipe provides high restraint of the flange at the

pipe-flange interface.

(b) Consider example (a) with Rochanged to 17.84 in. In that case

(Fp Max /FB Max) = 1.381, (wG Max /PB Max ) = - 1.52 x 10"6in211b

FB Max = 6600 Iblin, and FpMax
= 9100 ib/in

Thus moving the gasket location inwards increases the required bolt load.

(c) Consider example (a) with t changed to 0.5 in. In that case

(Fp Max/FB Max ) = 1.128, (wG MaxlFB Max ) = - 5.26 x 10-6in2/ib

FB Max = 1900 ib/in, and Fp Max = 2100 ib/in

The reduction in pipe wall thickness in this case gives a nearly propor-

tionate reduction in bolt force.



46.7 Discussion

Equations have been derived from which the additional bolt force

to correct warping at the gasket can be computed. Equations are also

given for the increment in moment in the flanges. In an example, comparable

to that given by Dudley, Ref. i, the bolt loads were about one-third of

those given by him. This reduction seems reasonable for the use of a three-
dimensional rather than a two-dimensional model. Additional examples show

that _the necessary bolt load is least when the gasket is nearest the bolts.

They also show, for the cases chosen, that reductions in the pipe wall

thickness_ give almost proportionate reductions in the necessary bolt

loads. The stresses obtained, though lower than those given by Dudley,

are still so high that his comment, "any unequal warping of mating surfaces

is evidently a serious problem," must be taken as a guide. Experimental

confirmation of the equations is desirable because of the simplifying

assumptions regarding cross-sectional distortion of the flange and bending

energy in the pipe wall.

It will ordinarily not be necessary to get the gasket circle

completely flat in order to achieve adequate sealing. The permissable

initial warping will depend not only on the gasket requirements but also

on the available additional load capacity of the bolts and flanges over

that already imposed by the usual axisyn_etric loading. Where the per-

missable variation in gasket force is significant Eqs. (28) and (30) can

be appropriately modified with little difficulty.

13,

46-15



46.8 References

I, W.M. Dudley, "Deflection of Heat Exchanger Flanged Joints as

Affected by Barreling and Warping", Trans. A._.M.E., Journal

of Engineering for Industry, Vol. 83, Series B, No. 4, Nov. 1961,

pp. 460-466.

2. E.O. Waters, Discussion of above paper, loc. cir.

46-16



47. EFFECT OF BENDING MOMENT AND MISALIGNMENT

ON FLANGE CONNECTORS

by

B. T. Fang

47,0 Summary

Bending loads on the pipe and flange assembly will result in an

uneven distribution of bolt loads and gasket compression. At the location

where the gasket compression falls below the internal pressure, leakage is

likely to occur.

If the flange surface is assumed to remain plane during bending,

simple relations are obtained which relate the changes in the bolt load and

gasket compression to the bending moment and the component stiffnesses.

However, bending moment also changes the originally uniform flange "rolling

moment" to a variable twisting moment and causes twist of the flanges. The

determination of the twist of flanges is comparatively complex. The governing

equations are given and a numerical example is computed. The result shows

that the relief of gasket compression due to flange twist is more than that

due to simple bending and should not be neglected. This does not seem to

have attracted the attention of previous investigators. It is highly

desirable that experimental work be undertaken to substantiate this finding.

When pipe misalignment exists, an uneven bolt load is needed to

bring the flanges together and secure a uniform gasket compression. This

is a consideration to be kept in mind when a torque wrench is used to

tighten the bolts.

47-1



47.1 Effect of Bendin_ Moment

It is well known that even a moderate bending moment influences the

sealing ability of a flange connector considerably (Ref. I). Essentially,

the bending moment changes the distribution of gasket compression, relieving

the compression at some places and increasing the compression at other places.

Leaking passages are likely to form at those places where the gasket compres-

sion falls below the internal pressure.

The redistribution of the gasket compression and the bolt load can be

found as follows:

_BI2

__G/" _"_ _ R B _ I
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Prior to the application of the bending moment, the bolt load is P_ (ib/in)

uniform,and the gasket compression PG (ib/in). Ideally, these loads are B
and the two faces of the flanges are parallel. When a moment M is now

applied, the two flanges will rotate with respect _to each other. If the

flange surfaces are assumed to remain plane, the elongation of the bolts

and the gasket can be represented in the form

_B = 5B max cos 0 (la)

5G = 5G max cos 0

RG

= _ 5B max
cos 0 (ib)

The change in bolt loads _p_ and gasket compresslon_PG are related to theseB
elongations by the appropriate stress-straln laws. For the bolts, Hook's

law holds and we have

_B - 5B (2a)

(2_)_ B

= APB max cos 0

EB_ (2b)

where APB max - (2_)_ B 5B max

EB = Young's modulus of bolt material

= total bolt area

_B = length of bolt

Gaskets as a rule do not follow Hooke's law very closely. But if the stress-

strain law for a gasket is known from experimental data, the change in gasket

compression ApG can be expressed in terms of the gasket elongation 5G. As a
simple case, we will assume a gasket material which obeys Hooke's law. Then,

similar to the above, the change in gasket compression can be written as

COS O (3a)
APG = APG max
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EGAG RBRG5B (3b)where _PGmax- 12_RGI_G max
I I

EG = Young's modulus of gasket material

AG = gasket area

_G = gasket thickness

From Eqs. (2a) and (3a) we obtain the following relation between the change

in bolt load and gasket load
¢

_PG max/L_PB max { ")/I l
= EGAG/_ G EB_/_ B (4)

Since the bending moment M on one section of the pipe is transmitted to

the other section of the pipe through the bolts and the gasket, these changes

in bolt load and gasket compression must have a resultant moment equal to M.

Therefore,

M =_f(_PBRBdO)_ cos(O-_)+f(APGRGdO)R G cos (0 - _)

cos 20dO _PG max= "_PB max - cos OdO

= "_ B max max

We obtain from Eqs. (4) and (5),

-M 1 (6)

Eq. (3a) now becomes

The change of gasket compressive stress is, therefore,
l

_PG/Width of gasket (7)

/
In arriving at Eq. (5) above, we have neglected the contribution to the

bending moment due to the bending of individual bolts and the variation of

gasket stress across its width. This approximation is justified as long

as the diameter of the bolt circle is large compared to the bolt diameter
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and the diameter of the gasket circle is large comparedwith the gasket width.

If in addition to the bolts and gasket, there is also a spacer in
between the flanges, or the flanges themselves contact each other, Eq. (6)
can be generalized as

-- -__MM I

_PG max _RG2 1 + (_IRG)2(KBIK G) + (RslRG)2(Ks/KS) + "'"

(6a)

where K G = EGAG/_G, % = EBAB/_ B and KS = EsAs/_ S are the stiffnesses of

the gasket, the bolts and the spacer, and _ is the spacer radius.

To obtain the change in bolt load, spacer load, etc., simply inter-

change the subscript G to B, to S etc. in Eq. (6a).

In the above we have assumed that the bending moment M on the flange

is known. Eqs. (3c) and (7) then give us the change of gasket compression

due to the moment. There are cases, however, where the pipe and flange

together constitute a statically indeterminate system under the load. In

that case, the moment on the flange will not be known until we know the

bending rigidity of every component of the system. The bending rigidity of

the pipe and the flange is given by the well-known expression

Bending rigidity = (Young's modulus)(area moment of inertia of the

cross-section)

The bending rigidity of the components (bolts, gaskets, spacers, etc.)

connecting the two flanges can be defined as

M M

Bending rigidity =--7_ G = 5G max/RG_G

M

2_PG/KG_ c

=---_ + + (8)
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TO illustrate our result, we consider the following flange connector:

(i) Gasket

Material =

I

Thickness = _ in.

I .
Width = -- in.

2

3"
Mean radius = RG_ = 18

iron jacketed asbesto_ EG = 4.8 x 105 psi

Gasket area = 2_ (18 _) ) = 58.9 in.2

(2) Bolts

3
Diameter = I _ in.

Number = 24

Equivalent length = _B = I0 in.

ffi EB ffi30 x 106 psiYoung' s modulus

Radius of bolt circle ffi 21 in.

Total bolt area
3 2 2

ffi (24)i(_,')(1=_) ffi 35.6 in.

For a bending moment of i0,000 in-lb., the maximum reduction in gasket com-

pression is, from Eqs. (6) and (7)

ZIPG max

Width of gasket
I0_,000

r1 j 1_(18"75)2 [ _21.751 _ 1o 4. --_1
8

ffi 546 psi

If a softer gasket (600 psi series spiral-wound gasket) of Young's modulus

7.87 x l0T psi is used instead, the reduction in gasket compression will be

183 psi. The rigidity of the bolts and gasket in resisting the bending of

the pipe and flange is, from Eq. (8)

{,2 _ _ 6)+(18.75)2 9)]

= 7.95 x 109 Ib-in2/rad.
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If the softer gasket is used, the bending ridigity will be 3.76 x 109 ib-in2/rad.
Suppose these flanges connect cast iron pipes of 17-1/2 in. inside radius
and 1/2 in. thickness, the bending rigidity of the pipe section is

El = 14 x I06 x_ [(18)4 - (17.5)4]
1.25 x I0 II Ib-in2/rad

which is much greater than the corresponding rigidity ofthe bolts and

gasket in resisting bending.
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47.2 Effect of Pipe Misalignment

I

Q 2

The above figure shows that the two sections of a pipe are misaligned.

In order to bring the flanges of the two sections together and secure a

uniform gasket compression, bending moments and shear forces are required.

These forces and moments are applied through tlghtenlngof bolts and appear

as uneven bolt tension and cross shearing of bolts. The magnitude of the
moment and the shear force is to be determined from the condition that for

uniform gasket compression, the axes of the opposing flanges should be

colllnear.

We shall assume that the pipe is "clamped" at its points of support.

Due to the moment M and shear Q, the rotation and deflections at the flange

ends are (Ref. 2)

M_I Q_
01 = El 2El clockwise

_i = 2El 3El downward

(9)

(io)

for the left-hand section, and

2
M'_2 +__

Y2 = ZE---I 3EI

counterc lockwfse

downward

(II)

(12)

for the right-hand section. The requirement that the axes of the flanges

are collinear is

51 01 = _ (52 - 02) (13)

81 - Yl = 82 - Y2 (14)

1.46
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From these equations we obtain

M

2 2 ( i 21(_ i-_i_2+_)-6(51-52 )
3

(_ 1+_2)

3
(_ l+_ 2)

(15)

(16)

Notice that in arriving at our result, we have:

(i) Neglected the contribution of the bending rigidity of the flange.

(2) Idealized the support of the pipeline by the "clamped" condition.

The bending rigidity of the flange is not important as long as the

length of the pipe is much greater than the length of the flange. The sup-

port of the pipeline, however, may be more like "continuous beam on many

supports" than "clamped." The present result can be easily generalized to
account for these effects.

From the point of view of leakage prevention, we desire a uniform gasket

compression and arrive at the conclusion that uneven bolt loads are required

whenever there is any misalignment in the pipeline. This is a consideration

to be kept in mind when the flange connector is assembled using torque wrenches.

From the point of view of not overstressing the bolts, however, the bolt loads

should be uniform. A compromise will sometimes have to be made. Eqs. (15)

and (16) serve as the basis for establishing the tolerance of pipe m/salign-
ment.

Numerical Example:

Consider the following two sections of a pipeline

Length = _i = _2 = i0 ft.

Young's modulus = 30 x 166 psi

Moment of inertia of cross section = 127 in_

(corresponding to a i0 in. diameter, 1/4 in. thickness pipe)

Initial misalignment ffic_I = 0.01 r_dian

c_2 = 0.02 radian

51 = 1.0 in.

52 = 1.5 in.

47-9
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From Eq. (15) we have

2

M-- 4(0.03) (lOx12)

(20x12)

-- 3970 in-lb

30xlO6x127 (+0.57
Q=

(20x12) 3

= 138 lb.

x 30xlO6x127

148
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47.3 Twistin_ of Flanges

In the preceding sections we assumed that the flange surface remains

plane during bending. It was shown that the bending moment relieves the

bolt and gasket load at some places while increasing the bolt and gasket load

at other places. The result is that the originally uniform flange "rolling

moment" becomes non-uniform, or the flange is now subjected to a twisting

moment variable along the flange circumference. To determine the twist of

the flange we proceed as follows. We formulate the equations relating the

changes in bolt and gasket load to the angle of twist of the flange; the

equations governing the bending of the adjoining pipes; the equations

relating the load on the flange and its angle of twist. By matching these

equations together we can determine the twist of the flange and the stresses

in the components.

47.3.1 Equations Relatin_ the Changes in Bolt and Gasket Stresses to the

Angle of Twist and BendinbMoment

/-_'-_ _pB G__ center of twist

Let the relative rotation of the flange surfaces be _ and the twist of the

flange cross-section be _ = 9max cos 0.

The extension of the bolts is

5B = [-_, + 2_ma x (RB -R) i cos 0 = 5B max cos 0 (17)

The extension of the gasket is

5G = [- C_RG + 2_max (RG - R) ] cos 0 = DG max cos 0 (18)
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We can eliminate C_ from the equations and obtain

2_ma x [R(I - _/RG) ] =- 5 B max + IRB/RG}SG max
(19)

or, in terms of the changes in bolt and gasket load

_,o..[_-_i_4_,-_ m_,_-_--I+_omax
I2_RGI

(20)

From Eqs. (5) and (20) we obtain the changes in bolt and gasket load in

terms of the bending moment M and the angle of twist Smax as follows

Z_PG max KG .] (21)

47.3.2

Z_PB max

Adjoining Pipes Analyzed as Cylindrical Shells

(22)

Z

X

N x
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At a large distance from the flange, a membranestate of stress

Nx = - (MI_R_) cos 0 (23)

exists in the pipe.

state of stress, a self-equilibrating bending state of stress exists.

complete solution is given in Ref. 3 as

where

In the vicinity of the flange, in addition to the above

A

w =le_ (Hli"COS _x + H2 sin _X) + M (x2/R_)/2_RhE9

L

+ H5(x/Rp) - HII cos 0

u = e-C_X(H5 cos _x + H6 sin _x) - M(x/Rp)/_RhE
i

-H5] cos 0

v = le-_X(H7 cos _x + H8 sin _x)
L

-H5(xlR p) + HI] sin 0

u, v, w. = displacement components in x, 0, z directions

E = Young's modulus

V = Poisson's ratio

h = wall thickness of pipe

• . R ] 1/2

O_ =-_ - + (1 - V 2) J
P

1/2

- M(x2/R 2 - 2V)/2=RhE
P

= 1__. - I + (i - V2)

H 5 = LIH 1 + L2H 2

H6 = -, L2H 1 + LIH 2

H7 = L3H 1 + L4H 2

H 8 = -L4H 1 + L3H 2

L.z = Ki/K5 (i = 1,2,3,4)

K I = R_[-p (I +v2)+ 2vR2_:2]

2
K3 = I - 2V+V

K4 = 2(2 +V) R2C_
2p

K 5 = 12(1 - V )(Rp/h)247_l 3

(24)

(25)

(26)



It is obvious that the exponentially decaying terms represents the self-
equilibrating bending solution while other terms represent the membrane
solution. From these equations we obtain, at the flange end of the pipe,

circumferential strain _8 = /cos 01FVM 2]

slope _ = (H2_ - HlCZ) cos 0 (28)

Stress resultants12(I - , IH [C_2 " Rp]
M = Eh3- cos0 - 82 -V(I+L_/_p + (LI_ L2_)/
x V2_ I + "

-S 2 c_+_--+ (nl_- L2Co/
p (29)

x I - V2 cos 0 _I . (i + L3)/R p - (LIC_ + L2_

+ H2[LI_ - L2CZ + VL4/Rp} - M cos ,/_R 2

(30)

+ H2 [_ 2 + _L 3 _ C_ (31)

F

+ H21_(3CZ2 _ _2) _ (2 - V)_ . (3 - V)( - C_L4 + _L3)/2R2
R2

L

- i(c_2 - _2)L 2 - 2c_n 1 /R
P 2R 3

P
)

47-14
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Since the bending solution is self-equilibrating we should have

and

Nx{_ max = "_x max
(34)

These relations are convenient since it often happens that some of these

expressions are much easier to compute numerically than the others.

47.3.3 Equations Relating the Loads on the Flange and Its Angle of Twist

I I

Mx

Nx

R
R p

Assuming that the cross-section of the flange remains rigid we may resolve

these forces and moments into a force in the axial direction and passing

through the center of twist,

q = (_PBRB + _PGRG - N R )IR = qmax cos 0xp

a twisting moment

T ffiL[_PB_(_ - R) + --u-u_CR=(R_ " R) + N R (R - PR )xp

+ MxRp - Qx%Z]/Rj = Tmax cos 0

and a bending moment

(35)

(36)

M = -N@ZR/Rxp = Mmax sin 0 (37)

The following figure shows a differential element of the flange and forces

acting on it
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Q+dQ _#' +cIM t

+ dMb / Mt

qRd@_

There exist the following equilibrium equations

qRd0 + dQ = 0_ or dQ = _qR
dO

dM

TRdO- dM t
t - MbdO = O, or d-O- = TR - Mb

dM b - M_Rd0 - MtdO + QRd0 = O, or _- = M R + M t - QR

(38)

(39)

(4o)

They admit the following solutions

shea_Q = -qmax R cos 0

Bending momentIM b = 0

Twisting momen_ M t = Tma x

The angle of twist is given by

R sin 0

d_ MtRdO/GJ _ or _ T R2= = - cos 0/GJ (41)
max

where GJ is the torsional rigidity of the flange.

47.3.4 Compatibility of Deformation at Junction of Flange and Pipe

The deformation of the flange and pipe as given in Section 47.3.2

and 47.3.3 should be compatible at their junction. Equality of rotation

gives us

H2_ " HI_ = %max (42)

The circumferential strain should also be equal. Since twist does not

introduce circumferential strainandthe flange cross-section is large compared

with pipe cross-sectio_we can take the circumferential strain in the flange

as zero approximately. Therefore Eq.(27) becomes
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VM/_R hE + HI(1 + L3) + L4H 2 = 0 (43)P

Eqs. (42), (43) and (36) are three equations for the three unknowns H1, H2
and %max" When the geometric and material properties of the fluid connector
are known these equations can be solved to give the twist of the flange and

the stresses in the components.

47.3.5 A Numerical Example

I"

I.

RB = Ii" R = 10.7" R = I0"
P

RG = I0.4"

The flange and pipe are made of aluminum alloy with

E = I0 x 106 psi

V = 0.33

GJ = (0.141)(1.5)(1)3(4 x 106 ) = 8.47 x 1051b-in 2

The gasket used is iron-jacketed asbestos gasket with

EG = 5 x 105 psi

AG = 2_(I0.4)(I/4) = 16.3 sq. in.

_G = 1/8 in.
EGAG

=-----= 6.52 x 107 ib/in.
KG _G

Forty 7/16" alloy steel bolts are used

EB = 30 x 106 psi

= (40)(0.106) = 4.24 sq. in.

_B = 2-3/8 in.

KB = 5.33 x 107 Ib/in.
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The connector is subjected to a bending moment of

M: = 400,000 in-lb.

We can calculate from Eqs. (21) and (22) that

6.52 x 107

_PG max =
_[5.33 x I07(II) 2 + 6.52 x I07(I0.4) 2]

[_/max (5.33 107) (i0.7) (II) (1-11/10.4) - (400,000)"
x

= -5.56 x I05_ 615 (44)
m ax

_PB max = 4.98 x 105 _max - 503

Since the hub is rather thin, it is more convenient to treat it as part of

the pipe rather than part of the flange. The hub and pipe is then taken

as having an average thickness of 0.2 in. The numerical values of the

parameters appearing in the shell equations are obtained as "-
I"

= 0.91

= 0.90

LI= 0.0178

L2= 0.0187

52 _ _2 = 0.0167

L3 = 1.68 x 10 -5

L4 = 0.0143

Eqs. (29), (31), (33) and (34) then give us

\

Mx max = 125HI - 12300H2

N = 12.5H 1 - 1230H 2 - M/_R 2
x max p

i'_x max = ll000H1 + 11200H2 (45)

A relation between H1 and H2 can be obtained from Eq. (43) as

H I = -0.0143H 2 - 0.0021 (46)

Substituting these equations in Eq. (36) we obtain

(4.98 x 105_max - 503)(11)(11 - i0.7) + (-5.56 x 105_/max - 615) x

I(10.4)(10.4 - 10.7) + 1230 H2 400, 000/g (10 (10)(10.7 - 10)

+ (-12300 H 2 - 0.262)(10) - (iii00 H2 - 23.1)(10)(0.5)

= (10.7){-8.47 x 105/(lO.7)21_max

47-18
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Or, after simplification,

106 - 1.87 x 105H 2 - 8550 = 0 (47)3.46 x 9ma x

Another equation relating _/max arLd }{2 is Eq. (42) which becomes

0.89}{2 + 0.0019 = _max

From these two equations we obtain

_max = 2.51 x 10-3 tad.

H2 = 6.85 x 10-4 (48)

and from Eq. (44)

_PG max = -5.56 x 105 _max - 615

=- 1400 Ib/in. (49)

as compared with -615 ib/in when twisting of the flange is not considered.

This example shows that the twist of the flange associated with the

external bending moment may adversely affect the gasket compression and

should not be neglected.
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_8. THERMAL DISTORTION OF FLANGES

by

S. Levy

48.0 Summary

This section considers the stresses and growth in radius and thickness

of a flange having a radial variation of temperature. A plane stress analysis

is presented for the case of a temperature rise given by the function Ar n + B,

where A, B, and n are constants and r is the radius. The flange material is

considered to be homogeneous with a constant coefficient of expansion. Numer-

ical examples are presented. These indicate that for given temperatures at the

inner and outer surface of the flange, the stresses at these surfaces and the

radial grouth are relatively insensitive to the actual values of A, B and n.

It appears therefore that moderate variations in the shape of the temperature

distribution curve, between the values at the inner and outer surfaces, have

little effect on stress or radial growth. Formulas are also given for the

growth in flange thickness. These are of interest in determining the change

in bolt load accompanying the temperature rise.
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48.i Introduction

Heating causes thermal expansion of materials. Since pipes may carry

fluids which are initially at different temperatures than the pipe wall, the

pipe connectors will be subjected to a change in temperature. In the case of

LOX, for example, there would be a sudden cooling. When the thermal constants

of the two flanges of the connector are not the same, their change in radial

dimensions might be expected to differ. This condition would be particularly

marked where one flange is stainless steel and the other is aluminum. Such

scrubbing may cause gasket leakage. Due to the much greater time lag in change

of temperature of the bolts, relative expansion may cause a tightening or

loosening of the bolts. This would also have a marked effect on sealing action.

In the case of tightening it could cause yielding with subsequent leaking when

equilibrium is achieved. In the case of loosening the gasket pressure would

be released with resulting immediate leakage.

For moderate temperature ranges in the usual flange materials, the co-

efficient of expansion can be considered constant and independent of direction.

For longer rises, however, it is necessary to consider the coefficient of

expansion as a function of temperature. In this section the coefficient is
considered constant.

When the temperature rise varies radially, unequal expansion takes place.

This gives rise to thermal stresses. The change in flange dimensions is then

the sum of that due to expansion and that due to thermal stress. The modulus
• |

of elastlcity and Poissons ratio are involved in determining the change in
dimensions with stress.

The elastic modulus can be considered to be constant over moderate

temperature ranges but is a function of temperature for wider ranges of temper-

ature. In this section the modulus is considered constant.

The importance of thermal stresses in Diesel and turbine engines as well

as elsewhere has resulted in a substantial body of literature on this subject.

Timoshenko, (Ref. I), gives basic equations as well as some results for

particular cases. Additional treatment of the subject by Manson is given in

Ref. 2. A relatively simple solution results if the temperature rise can be

approximated by the function Ar n + B. This form of solution is used in this

section with results given not only for stresses but also for the growth in

radius and flange thickness.
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48.2 Nomenclature

T = temperature rise

A,B,n constants in T = Ar n + B

r

t --

a --

b =

E --

V =

Or =

8 =
r

_t '-"

E --

Z _

radius

flange thickness

inner radius

outer radius

coefficient of expansion

Young's modulus

Poisson's ratio

radial stress

circumferential stress

radial growth

thickness growth

unit change in length due to temperature expansion and

stress combined

coordinate in thickness direction
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48.3 Results

It is shown in the Appendix that for a temperature rise distribution

given by

T ffiAr n + B, (I)

the radial stress in the flange is given by

]_EIF nu [a2b2/'/bn-an/ ( a2 ) b(b--_-a2) ]°'" I - - "°*I r2 ] lb_-a2J _ bn

The circumferential stress is given by

a =(n_22)I-(n+l)rn la2b21 /bn anl [ a2Ic + _ r2 ] l_]-_bT_a2] an + ( b2 )n]_-_ b

The radial growth at the inner and outer surfaces is given by

inner = a ' b2 " a2 .j

(4)

and, 8r, outer = b + _ ; _ _ (5)

The growth in thickness at the inner and outer surfaces is given by

h_tl bn
at, inner = (_Bt + OLAt an + _n+2 inan - 2b2 - (6)

.n. ""at, outer = UBt + O_t bn + _n+2 ] nbn - 2a2 - (7)

The circunfferential stress at the inner and outer surfaces is given by

¢c, inner _ nan + 2b2 - a= 2 (8)
- a

l

and

('_'j--)I-nbn b('b"2"- _22)]
_c, outer = + 2a2 (9)

(3)

1G2
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48.4 Examples

Example 41): Consider a flange for which the inner radius is i inch and
the outer radius 2 inches. Let the thickness t=0.5 inch. Let T=500°F at r=l

and T=IOO°F at r=2. Let_=0.3, E=I0,000,000 psi, and_=lO'5/°F. Assume the

temperature distribution is adequately given by T=500/r 2"32. What are the

stresses and deformations_

a = i, b = 2, t = 0.5, A = 500, B= 0, n = -2.32

Using equations (8) and (9)

ae, inner = 2-2.3210-5x 2.32 + 8_-_-_

:- [ (w)lo_, outer 156,200 2.32 x 0.2 + 2 = 10,800 psi

Using Eqs (4) and (5)

r, 2-'32 l]I_ooo_:_i°+(w._°-') L _j
(-,+._°_)=.oo=_o= -. 03125 3

8, outer = 2 (.00207) = .00414 in

Using Eqs. (6) and (7)

,._o=:o.,00x_0_+__)[-_._-_

St, outer 0.5 (500)10_'5 _2-2"32 +(_2) _2.32 x 2-2"32-2 (/--_J_

= .0025 .2 + -0.3----_

It is of interest to note that the thickness increase is about eight times as

much at the inner surface as at the outer although the temperature rise is

only five times as great. The excess results from the thermal compressive
stress at the inner surface.
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Example (2): Suppose we repeat example (I) with the same temperature at

inner and outer wa_l§_but assuming the temperature distribution to be adequately

given by T= lO00/rU'IJI-500.

Now A=I000, B= -500, n= -0.737 and a, b, t are unchanged

Substituting values in Eqs. (4) to (9) gives

_, inner = -26,[00 psi ; _, outer

_, inner = 0.00238 in _t, outer

_, inner = .00289 in _, outer

= 13,800 psi.

= 0.00476 in

= 0.00034 in

The change in temperature distribution from Exam. I has not markedly affected

the stress or deformation.

Example (3): Same as Exam. (I) and (2) except T= 800/r -300

NOW A= 800, B= -300, n=-I

Eqs. (4) to (9) give,

_, inner = 126'700 psi _, outer

_, inner =0.00233 in _, outer

_, inner =0.00290 in _, outer

= 13,300 psi

= 0.00466 in

= 0.00030 in

Example (4): Same as Exam. (i) to (3) except T= 400"5/ri0+ 99.5

Now A= 400.5, Bffii00, n= -i0

Eqs. (4) to (9) give,

C, inner

_, inner

_, inner

= -36,700 psi

= 0.00133 in

= 0.00305 in

Oc, outer y 3,300 psi

_, outer = 0.00266 in

_, outer = 0.00045 in

It iS noted that changing n to -I0 in this example has resulted in some

modification of the resulting stresses and displacements. Even in this case

comparison with Exam. (I) shows that the results are within 26% for the largest

stress, 56% for the largest radial displacement, and 5% for the largest thick-

ness change.

104
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The results of the examples are plotted in Figs, 48.1 and 48.2 as a function

of the shape factor n. In Fig. 48.3_he corresponding temperature distributions

are shown. It is apparent from Fig.48,3 that a considerable range of temperature
distributions has been considered.

n !

-I0

Oclouter

I

-5 0

a c, inner

-- +20,000 psi
m

m

m

-- -40,000 psi

Fig. 48.1 - Stresses in Flange as a Function of Shape Factor n.

-.005 in,

-.004
--.003

/

-.002

5 --.001
t,outer

n -_0 -_ 0

Fig. 48.2- Radial Deflections and Thickness Changes as a Function of Shape
Factor n.

oF

500--

400--

300--

200__

I00_

0

i000
I I

1 in. 2 in.

Fig. 48.3- Temperature Distribution as a Function of Radius for Various

Shape Factors n.
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48.5 Discussion:

Formulas have been presented for stresses and deformations in flanges due

to temperature effects. The numerical examples presented indicate a marked

insensitivity to the actual temperature distribution so long as inner and outer

surface temperatures are unchanged. This is of special importance because of

the difficulty of obtaining exact solutions of the transient heat flow in such

a flange.

The solution is based on constant material properties. If the need arises_

it appears possible to include temperature-dependent properties where the

temperature dependence fits the polynomial nature of the solution.
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48.6 Appendix

_8; 6.1 Derivati°n of Thermal Stress Equations

The solution of the thermal stress problem presented earlier in this

section is based on satisfying the conditions of equilibrium and compatibility.

_o Equilibrium requ res that

ar + r _ (1A)

The unit change in length.is given by,

%=az+ T -w-_ (2A)

dr %=_Z+ -_ -re (3A)

0 e = eT-V_--V. -_" (4A)-z

Compatibility requires that

= =r_ %
(5A)

Using Eqs. (2A) and (3A) in (5A) gives

= -- V_--rr (6A)

Substituting for o
c

entials because circular symmetry removes 0 as an argument,

d 2or d_

2 r _r _ + 3 r _. = - _Er

If we consider the temperature distribution as being describable by the
function

from (IA) gives after re-arranging terms and using differ-

(7A)

T = Ar n + B (8A)

we find the solutlon of (7A) £s

=r = - A(_--_) rn+ CiE/r2+ C2 E .(gA)

where CI and C 2 are constants of integration. Setting _r ffi0 at the inner

and outer radius r = a and r = b gives

0 = -A(_'_-2 )a n + C1/a 2 + C 2 (10A)

o: +
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Solving (IOA) and (10B) for C 1 and C2,

_ a2b 2

b 2 -a b2 "a 2 (13A)

Substituting Eqs. (12A) and (13A) into (9A) gives Eq.(2) in the earlier part

of this section. Substituting Eq. (2) into Eq.(IA) gives Eq.(3).

The radial growth is

Substituting Eqs. (2) and (3) in this and evaluating for r= a and r= b gives

Eqs.(4) and (5).

The thickness growth is

( ° ÷)8t =t % = t c,T-v_----v (15A)

Substituting Eqs. (2) and (3) in this and evaluating for rffia and r= b gives

Eqs. (6) and (7). Evaluating Eq. (3) for rffia and r= b gives Eqs. (8) and

_9).

167
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ANALYSIS OF FLARE-TYPE DEMOUNTABLE TUBING CONNECTORS

by

S. Levy

49.0 Summary

In this section the sealing pressure in flare-type demountable tubing

connectors is considered. Equations are given for the elastic and plastic

behavior of variable thickness tubes. From these it is shown that both the

fitting and tube yield in hoop stress in the area where sealing occurs. An

equation is given for determining the sealing pressure in terms of the

geometry of the connector and the material properties. In an example, for

a stainless steel tube of 0.385" I.D. and 37° flare angle, it is shown that

the maximum sealing pressure is about 50,000 psi and occurs about 0.i inch

from the tip. Tightening the nut on such a fitting is shown to increase the

sealing pressure and move the maximum sealing pressure point farther from the

tip.
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49.1 Introduction

It is common experience that flare-type demountable tubing connectors

appear to be permanently deformed in the seal region after tightening. Some

investigators feel that in addition yielding occurs at the threads and that

the nut tends to expand.
Nut

Fitting

_ __Tube Sleeve _

d

In studies of leaky connectors (Ref. I), it has been found that con-

tributing factors to leakage include:

I. Ovality in excess of 0.0005 inches.

2. Step changes in surface "out,of-round" in excess of 0.0001 inch in
60 ° of arc.

3. Scratches, tool marks, chatter, and waviness which can breech the

closure path.

4. Step changes in tube wall thickness.

5. Overstressing fitting sleeve with creep effects resulting in

delayed leakage.

It has been found that polished fittings (RMS8) against precision flares

can tolerate ovality of up to 0.0005 inches. MoS_ has been found to be an
ll _" " ll "

excellent pore filler and lubricant. Copper crush wasners nave been found

to improve sealing ability. These washers may by up to 0.005-inch thick for

tubes up to 3/8-inch size and up to 0.010-inch thick for tubes up to 2-inch

size. The use of a double angle on the sleeve tends to be beneficial.

A review of these experience factors for this type of connector suggests

that even with tightness causing yielding in some places, the "sealing pres-

sure" is on the low side for the mechanical properties of the materials used.

The relation between "sealing" pressure, a , at the tube-fitting inter-

face and axial stress, aa, in the fitting is il_ustrated in

49- 2
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Interxace _._ ¢

itting

b+_ tanO

a L

_a_ doa/__x

°a +d--_--z

os

the sketch. Equilibrium of horizontal forces gives

°I_ sin O -_- tan O] +._a_(b 2 a2) =

Neglecting Ax 2 this equation reduces to

• -d_
2rrb Z_ tan ga = 2gb(_x)tan Oe + g(b 2 - a2)(ZSx)dx

s a

s = aa + _ tan 0 dx

is _ = @ •
A solution of this equation for constant _s s a

For radial equilibrium, the radial force component of the "sealing"

pressure on the disk of axial length_x is

bx
as (c--'_'_s O) cos 0 = _s_X

49"3



A disk of thickness _ subjected to an external radial force can resist this
force in either of two ways. First, by transferring the load to neighboring
disks through the action of shear forces ro In the elastic range this trans-
fer requires an axial distance of about the square root _t_ __t_e
radius or_(a + b)(b - a)/21 (Ref. 2, p. 397). This is so s_rt a distance

that each.disk supports its own external radial force _ hoop action. In

t_ plastic range shear transfer drops to zero so that the same:conclusion

applies. 0 $

The second way of resisting is by hoop compression which we will now discuss.

In the elastic range the stresses in a disk of thickness Llx subjected to an

external radial force a _x is given by Lame's theory as
s

ahoop = "Ib2 _2"a211a2 _2"r_) as

It is evident from this equation that

ahoop -2Os/(I - a2/b 2) when r a

(i + a2/b2)/(l - a2/b 2) when r = b
ahoop = -a s

These equations show that the hoop stress at r = a is many times the

"sealing" pressure a near the tip of the fitting where a is nearly equal

to b. Even far fromSthe tip where b = l. Sa, the hoop stress is 3.6 times

the "sealing" pressure a .
s
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If the hoop stress is computedfln the basis of full plasticity hoop-

wise, the hoop stress is everywhere _ , the yield stress in compression.

Equilibrium of forces in a vertical d_ection in the sketch gives

2%(b-a)Ax = _sL_xbdO sin 0

giving, a = _ (I - a/b)
s yp

YP YP

This equation shows that in the yield range, as in the elastic range, the

hoop stress, ¢ in this case, is many times the "sealing" pressure near

the tip of theY_itting where a is nearly equal to b. Even far from the tip

where b = l.Sa, the hoop stress is 3.0 times the '_ealing" pressure a .
" S

The low ratio of "sealing" pressure to hoop stress for this connector

is probably the reason why a good seal is achieved only when it is very

smoothly fitted or when a soft washer material is used.

In this section we will develop methods for predicting the "sealing

pressure," taking into account the effects of hoop yielding, as well as

the interaction between fitting and tube.
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49.2 Elastic-Plastic Analysis

A sketch of the geometrical relationship between the fitting (i), the

tube (2) and the sleeve (3) is shown. In a possible configuration, nthe angle

between the axis and the interface between pieces (i) and (2) is 37 v. Due

to loss of thickness of the tube while expanding, the outer wall of (2) is

at an angle of about 33.5 ° . The inner side of (3) is taken at an angle of

37° in this example. It should be noted, however, that a more realistic

value of the angle at the inner side of (3) is 28 ° (Ref. I, Fig. I). As

an example, the value chosen is considered adequate. Tightening of the nut

will force (I) into (2) such that a radial interference K develops at x = O.

The difference in angle between the inner and outer walls of the tube

is inherent in the manufacturing process. The remaining angles are, however,

subject to the designer's decision. In some configurations the angle on

the inner face of (3) can be less than that on the outer face of (2). There

are configurations in which a double angle is used for the inner face of (3).

Considering the stresses in part (I), it is seen that a hoop compression

is developed near the tip in proportion to the radially inward deflection K.

This compression reacts on part (2) so that part (2) is deflected outward.

At a small value of x part _2) will "bottom' on (3). At a somewhat larger

value of x, the stresses are such that (2) becomes free of (3). The point

of maximum pressure between parts (i) and (2) will occur in the region where

(2) is "bottomed" on (3). As an example, we will now consider these stresses

for the case sketched.

For purposes of understanding, we postulate a pressure between parts

(2) and (3) such that (I), (2), and (3) are all in intimate contact. This

results in radial deflections of pieces (I) and (2), positive inward, given

by:

w I = K - x (tan 37 ° - tan 33.5 °) = K - .092x (I)

w 2 ffi-.092x

In addition, we denote

h I = radial thickness of (I) = x tan 37 ° = 0.754x

h2 = radial thickness of (2) = 0.064 - (tan 37 ° - tan 33.5°)x

= 0.064 - 0.092x

(the initial tube wall thickness has been t_ken as 0.064)

4_6

t74



D 1 = Eh13/12(l - v 2) = O.038Ex 3

(Poisson's ratio v has been taken as 0.25)

D 2 = 0.000,0691E (0.696 - x) 3

a I = radius of mid-thickness of (i) = 0.190 + 0.335x

(the initial tube radius has been taken as 0.190)

a2 = 0.222 + tan 35°x = 0.222 + 0.700x

a12 = radius of (I) - (2) interface = 0.190 + 0.754x

a23 = radius of (2) - (3) interface = 0.254 + 0.754x

ZI2 = pressure at (I) - (2) interface

Z23 = pressure at (2) - (3) interface

Timoshenko (Ref. 2, pages 413 to 422) considers the case of a cylinder

with non-uniformwall thickness and gives as the governing equation

_ Z

where w is the radial deflection, positive inward

Z is the external pressure, positive inward

D is the flexural rigidity, variable

h is the thickness, variable

In this equation, the first term on the left-hand side corresponds to the

lateral load resisted by wall flexure. The wall, in flexing, carries load

much as does a tapered beam. The second term on the left-hand side corre-

sponds to the lateral load resisted by hoop compression of the cylinder. The

wall carries hoop compression much as a ring does.

In deriving this equation, Timoshenko tacitly assumes that the wall

thickness varies slowly and that the inner and outer radii are nearly

equal. We will now examine how this equation should be modified to apply

to the fitting, for example, for which the taper is large and for which

the inner and outer radii may be substantially different.

Firs% we consider the right-hand side of the equation. In the case

where the pressure is applied externally, we must take the effective value

of Z as being largerfin proportion to the ratio of the outer radius to the

mid-thickness radius. In the case where the pressure is applied internally,

we must take the effective value of Z as being smaller in proportion to the

ratio of inner radius to mid-thickness radius.

Second, we consider the second term on the left-hand side of the

equation. Since w/a represents the average hoop strain, the value of
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'a' referred to is the mld-th_ckness value.. The remaining 'a' factor is

also the mld-thickness value, since it converts the average hoop load Ehw/a

into an equivalent pressure at the mid-thickness radius.

Finally, we consider the first term in Timoshenko's equation. The

degree of error in this term due to taper is difficult to judge. As the

best available approximat_6n we will keep this term in the same form as

Timoshenko gives it.

In the elastic range then, Timoshenko's equation for pieces (I) and (2)
becomes :

d 2 .__./ d2Wll EhIWl al____2

--_DI_" I + 2 = Z12
dx 2 a I a I

2 Eh2w2
d2 I dw21

dx--_ ID2--_) + 2 - Z23 a23 - Z
a2 a2 12--

a12

a2

(2)

In the plastic region for hoop stress, the first term in Eqs.(2) drops to

zero, and we replace Ew/a by _ in the first of Eqs. (2) and by -_

in the second. Doing this giv_ YP

hlay p = Z12a12

h2ay p =-Z23a23+Z12a12

(3)

Consider first part (I) with K large enough to cause yielding. As a

reasonable approximation we take a = O.006E. Then from the first of

Eqs.(3) for wl/a I _>0.006 (yieldln_in compresslon)

0.754x(.006E) = Z12(0.190 + 0.754x) (4)

K-.092x >0.006)
(wl/al::_006 gives .190+.335x

From the first of Eqs. (2) for wl/al<O.006

E(0.754x)(K-.O92x) = Z12(O.190+O.754x)(0.190+O,335x) (5)

K''O92X <0.006)
(for 190+_335x

From the second of Eqs, (2) for -w2/a2<0.O06 (yielding in tension)

E(O.O64-0.092x)(-.O92x) = Z23(O.254+.754x)(0.222+O.700x) (6)

-Z12(0.190+.754x)(0.222+o.700x)

+0.092x _0.006,i-w2/a 2 <0.006 gives 0.222+0.700x

that is, x<_0153)

49-S



From the second of Eqs. (3) for -w2/a 2 > 0.006

(0.064-0.092x) (.O06E) = - Z23 (.254+. 754x)+Z12 (0. 190+. 754x) (7)

•092x

(for 0.22 - .-700x> 0.006)

Setting ZpB = 0 in Eq. (7) and substituting for Z12 the value given in

Eq. (4) shows Ehat reversal in the sign of ZgRoccurs a_ x = 0.0757 so long

as K >0.00825. One can expect part (2) to _Irst contact the sleeve then

at x = 0.0757 for interferences K _ 0.00825.

Setting ZpB = 0 in Eq. (7) and substituting for ZI2 the value given in

Eq. (5) shows ESat the next reversal in the sign of Z23 occurs at x = 0.I0
for K = 0.01017 and at x = 0.20 for K = 0.01887. One can expect, therefore,

that when K = 0.01017, part (2) will bear on part (3) from x = •0757 to

x = 0.i000. Similarly, when K = .01887, part (2) will bear on part (3)

from x = .0757 to x = 0.2000.

The highest value of sealing pressure, ZI2 , occurs at the value of x
where part (1) makes a transition from the plastic solution, Eq. (4) to the

elastic solution, Eq. (5). This transition occurs when x = x where

_- .092Xm)/(. 190+,335x m) = 0.006. Substituting this value of _m into Eq. (4)
gives

(K- _001141(Sealing Pressure)ma x = ZI2 = (.006E) K+.0226 I (8)

Thus, when K = .01017, Z.^/E = .00165, at x = .096

and when K = .0189, -IZ'E .00257, at xm = .189
Z12/ m

Since these sealing pressures are roughly a third of the yield pressure, it

is apparent that a good seal will only be attained where the surfaces are

very smooth and match in contour.
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x = .189
Point of maximum

x = .096 sealing pressure

Point of maximumsealing pressure tar_s I _Ontact_zOn_'_lecesz _Yield.i ng x O.200
, in piece

Yieldinginpiece 2starts =._O_i O x _ .015307_ 7

x=.01_ _

@

x=. 189
K=.01'017 _'Yielding stops K=.01887 Yielding stops

in piece 1 in piece 1

K = .01017 K = .01887

The sketches give a description of the contact regions and areas of

plastic hoop stress. Cross-hatching is used to indicate plastic hoop stress.

For the interference K = .01017, it is seen that contact between pieces (2)

and (3) occurs between x = .0757 and X = .I00. The maximum contact pressure

between pieces (I) and (2) occurs at x = .096 which is also the point where

piece (I) has a transition from plastic to elastic behavior. With an inter-

ference K = .01887 the zone of contact between (2) and (3) is broadened and

extends fromx = .0757 to x = .200. The maximum contact pressure between

pieces (I) and (2) now occurs farther from the tip at x = .189. As before,

yielding stops in piece (i) at the point where maximum contact pressure

occurs between pieces (I) and (2).

In the particular example treated here we have seen that both tube and

fitting have both elastic and plastic zones. The contact zone between

pieces (2) and (3) is seen to have broadened as the interference K has

increased. With other geometries for the sleeve (3) it is evident that the

"contact zone" between the tube (2) and the sleeve (3) can be established

at other values of x. For example, if the sleeve has the double-angle shown

in the sketch, the "contact zone" will tend to center in the region A of

first contact of pieces (2) and (3)." "Similarly, if the angle on (3) is

lower than the angle on (2) (as is frequently the case), the "contact zone"

will tend to center in the region B where x is large. In this regard,

however, it should be noted that piece (3) can be expected to deform so that



the final angle on piece (3) may well be greater. Regardless of the specific

contourln E of (3), it is apparent that a "contact zone" between (2) and (3)

will develop. In the neighborhood of this "contact zone" the deformations

and stresses will be similar to those in the example. The tube (2) may or

may not be y_elded in the "contact zone" depending on the backing provided

by (3). Piece (I), however, will always be yielded in the contact zone,

and the maximum "sealln E pressure" will occur where plece(1) has a transi-

tion from plastic to elastic hoop action. The "sealing pressure" increases

with increasing x in the plastic zone, s_hl_ethe thickness increases while the

hoop stress is constant at the yield stress; in the elastic region beyond,

although the thickness continues to increase, the hoop stress now decreases

more rapldly.
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49.3 Other Considerations

The interference between parts (I) and (2) is achieved by the pressure

of nut (4) in pushing sleeve (3) against tube (2) which in turn bears on

®

@
@

fitting (I). It is evident that at point A there is a need for close

tolerances to prevent variations in contact pressure circumferentially.

Similarly, at point B there is such a need. The sleeve will ordinarily be

too light to back-up the tube by itself. It will bear in turn on the nut

at C. Deviations from concentricity between sleeve, nut, and tube, as well

as ovallty, can cause substantial circumferential variations in sealing

pressure. No detailed analysis of these effects will be given here.

In the preceding section we have assumed that the force between mating

parts can be described as a normal pressure. In actuality, frictional

forces will also be present, particularly in the absence of lubricants. The

frictional force will diminish the ratio of "sealing pressure" to axial

stress in proportion to I/(I + v cot _) where v is the coefficient of

friction and _ is the angle between the (i) - (2) interface and the fitting

axis. As a result, friction tends to decrease the "sealing pressure" for

a given nut tightness. On the other hand, friction increases the ratio of

"sealing pressure" to hoop stress in proportion to I/(i - v tan B).

_co •

o
r

= (1-v ta_ _)Or _s

_a a (l+a cot _)s

As a result, it appears that friction can be favorable where hoop stress is

a limiting factor and unfavorable where axial stress is limiting. In addi-

tion, of course, galling and similar related phenomena are more likely

where friction is large.
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In addition, friction at A and B in the preceding sketch will increase
the torque required to attain a given normal force betweennut and sleeve.

Temperature will tend to affect part (i) muchearlier in time than it
affects part (4). In addition, the presence of several interfaces, i.e.,
(I)-(2), (2)-(3), and (3)-(4) makes it likely that a steady-state tempera-
ture difference between (i) and (4) will develop whenever the fluid is either
much hotter or much colder than the external environment. Since yielding is

present from the beginning, it is likely that many temperature effects will

result in additional yielding with a corresponding reduction in tightness

after equilibrium is reached.

Internal pressure will have some tendency to increase seal tightness by

relieving compressive hoop stress in part (I) and causing some additional

yielding in hoop tension in part (2) and additional loading of the "back-up"

structure, part (3). In view of the additional yielding in part (2), it

seems likely that the sealing effectiveness at lower pressures will have

been reduced by a previously higher internal pressure.

The use of a soft washer between parts (i) and (2) can be expected to

substantially improve the leak effectiveness because the "sealing pressure"

will be relatively unaffected, while the surface "softness" will be much

improved.

Another means of improving the sealing effectiveness may involve the

use of an elevated contact surface at A on piece (I) to localize the sealing

area. In so doing, it should be possible to increase the ratio of "sealing

pressure" to hoop stress, particularly where the "contact length" can be

made substantially smaller than the thickness of (I) in the vicinity of A.

Such a change in shape of (i) may adversely affect flow, cleanliness, strength,

or other factors and requires thorough investigation. It should be noted

that localizing the contact zone between (2) and (3), as by a double-angle

sleeve, is not nearly so effective, since the localization will spread out

in going through (2) to the (1)-(2) seal interface.

It would appear that increasing the fitting angles would also be bene-

ficial. With larger angles, the presence of some friction prevents hoop

stress from being limiting and makes the "sealing pressure" approach the

axial stress in magnitude.



49.4 Conclusions

The elastic-plastic behavior of flare-type demountable tubing connectors

shows that hoop yielding inthe "seal" area is probably always present. The

"sealing" radial pressure is, however, only 1/4 to 1/2 the yield stress,

depending on geometry and degree of tightening. As a result, this formof

connector benefits little from surface yielding in getting a better "fit"

between the sealing surfaces. Such a connector, therefore, requires ex-

cellent surfaces if a tight seal is to be achieved. The presence of unusual

pressure or temperature conditions will cause a worsening of the leakage

characteristics inmost cases. Greatest improvement in the performance of

these connectors can be expected from:

(I) The use of "crush" washers or soft gaskets.

Some benefit can also be obtained from:

(2) The use of "double-angle" sleeves.
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